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Abstract— In the last few years, several studies have been
carried out showing that functional electrical stimulation (FES)
and neuromuscular electrical stimulation (NMES) produce good
therapeutic results in patients with Spinal Cord Injury (SCI).
This paper presents the proposal of a fine-tuning method
based on an improved genetic algorithm (IGA) to a continuous
and robust control technique for uncertain nonlinear systems
named Robust Integral of the sign of the error (RISE), for
knee joint control. Simulation results are provided for three
paraplegic and one healthy identified patients on ideal and
nonideal conditions. Although in the literature this controller
presents good results without any fine tuning method, we
provide an approach to improve it, even more, believing on the
minimization of fatigue and other problems that often occurs in
SCI patients treated with FES/NMES, by selecting adequately
the gain parameters of the RISE controller.

I. INTRODUCTION

It is well recognized that spinal cord injury (SCI), which
may be caused by diseases that destroy the neurological
tissues of the spinal cord or by a tragic accident, causes
issues as total or partial paralysis, muscles atrophies and
spasms, and it can lead to cardiovascular and pulmonary
diseases that directly decreases the well-being of the patient.
SCI is often irreversible and it can cause an inability to
complete daily activities or occupational ones. The most
common SCI rehabilitation, to preserve the integrity of
paralyzed muscles, is the use of neuromuscular electrical
stimulation (NMES) via surface or intramuscular electrodes,
which applies a potential field across the motor neurons to
achieve a desired muscle contraction. Strength of muscle
contraction is controlled with electrical current pulses by
changing the pulses amplitude, width or frequency [1]–[3].

Efforts have been made motivated by the promising ther-
apeutic treatment and beneficial results of NMES to in-
crease the efficacy of motor rehabilitation on accomplishing
functional tasks where it is named as functional rlectrical
stimulation (FES). Although several researches and develop-
ment of NMES applications have been reported in the past
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few decades, there are numerous challenges to be faced on
designing automatic stimulation strategies, e.g., the system
must run in real-time and safely even in face of bodily
uncertainties. Thus, the main reason to continue investigating
on this field is that real-world NMES/FES applications
to rehabilitate SCI patients require a control strategy that
compensates muscle fatigue and spasms, modeling errors,
external disturbances, and many other factors [4]–[9].

The present study investigates a continuous and robust
control technique for uncertain nonlinear systems that has
been reported in the literature as robust integral of the
sign of the error (RISE) [10], [11]. The RISE method was
chosen because of some intrinsic characteristics, such as
it considers disturbances that were not previously modeled
and it also has implicit learning characteristics, which are
really important on performing rehabilitation experiments.
However, the controller parameters adjustment is the key
factor to guarantee control performance quality. Considering
the stability proof analysis and gains sufficient condition
established in the original papers, it is difficult to reach
expected control effects in practice just adjusting empirically
the gain parameters in the extreme large search space R+.
In daily routines of NMES/FES application to SCI patient
rehabilitation, there are problems as muscles fatigue, tremors,
and spasms due to incomplete tetanus [5], [8], [12], which
would be increased by applying a ‘trial and error’ method to
tune the controller.

To overcome this problem, this paper proposes an opti-
mization procedure based on an improved genetic algorithm
(IGA) for better acquiring gain parameters of the RISE con-
troller considering a human lower limb properly identified.
Fig. 1 illustrates the proposed method, which assumes that
if dynamics of a human lower limb is efficiently mapped,
put to a simulation process making use of a global search
and fast optimization algorithm, which tests numerous gain
combinations evaluating a well-defined control task, a con-
troller that has implicit characteristics on learning (as RISE
controller, or others) will be better tuned and performance
in real world can be improved.

The literature indicates good lower limb tracking perfor-
mance of the lower limbs using the RISE controller [4], [6],
[12]–[17]. However, the motivation of this paper emerges
from the lack of intelligent techniques to adjust the RISE
controller parameters. Our hypothesis is that the system
response can be improved using efficient tools such as artifi-
cial intelligence methods. In addition, those controllers were
developed and tested only on healthy patients. Our proposal



Fig. 1: Optimization procedures to a control task by the IGA.

is to extend the analysis to paraplegic individuals who present
non-idealities not present in healthy individuals [8], [18].
Hence, this paper simulates the RISE-based controller fine-
tuned by an IGA in a more realistic way taking advantage
of three paraplegics and one healthy from [7], providing
insights of NMES on ideal and nonideal conditions before
experimental validation.

The following sections are organized as: Section II de-
scribes the dynamic lower limb model including nonideal
muscle conditions, and presents the RISE control method.
Section III shows the procedures for numerical simulation.
Section IV presents simulation results to the regulation and
tracking problem and discusses the metrics derived from the
results obtained by the empirical and IGA tuning. Finally,
the conclusions are presented in Section V.

II. BACKGROUND

A. Human Lower Limb Model

The mathematical muscle model used in this paper con-
siders the relationship between electrical stimulus and knee
joint dynamics based on [7], [8], which considers a subject
seated with the lower leg freely suspended. Further, this
model includes nonideal muscle conditions, such as fatigue,
spasms, and tremors. The knee angular acceleration θ̈(t) is
expressed as

θ̈(t) =
1

J
(−mgl sin θ(t)− τstiffness −Bθ̇(t) + υ(t)), (1)

where J is the moment of inertia of combined shank and
foot, θ(t), θ̇(t), θ̈(t) are the knee angular position, velocity
and acceleration respectively, B is the viscous damping
coefficient, m is the combined mass of shank and foot, g
is the gravity acceleration, and l is the distance between the
knee joint and center of mass of shank and foot. The stiffness
torque is

τstiffness = λe−E(θ+π
2 )(θ +

π

2
− ω), (2)

where λ, E are exponential term coefficients and ω is the
resting elastic knee angle. Additionally, this paper modeled
muscle fatigue fat(t), tremor tr(t), and spasms spm(t) to
modify the active knee torque τquad(t) generated by an
electrical stimulus in three levels (smooth, moderate and
critical), according to [8]. Mathematically, it is expressed
as

υ(t) = (1 + spm(t) + tr(t))τquad(t)fat(t), (3)

where υ(t) is the active knee torque under nonideal mus-
cle conditions, in which τquad(t) can be expressed in the
frequency domain as

τquad(s) =
G

1 + ηs
PWquad(s), (4)

where PWquad(s) is the Pulse Width (PW) and G, η are
constants of muscle activation function.

B. RISE Control Development

The RISE control technique has been proposed as a
continuous-time and high gain feedback control approach
for uncertain nonlinear systems, which even in spite of
bounded smooth external disturbances and bounded model-
ing uncertainties, the control law can guarantee asymptotic
tracking [10], [11]. For our control purpose, a position
tracking error e1(t) ∈ R, is defined as

e1(t) = θd(t)− θ(t), (5)

where θd(t) is the desired angular trajectory assumed to have
bounded continuous time derivatives, and θ(t) the actual
position. Additionally, to facilitate the control design, filtered
tracking errors e2(t) ∈ R and r(t) ∈ R are defined as

e2(t) = ė1(t) + α1e1(t), (6)

r(t) = ė2(t) + α2e2(t), (7)

where α1, α2 ∈ R denote positive and adjustable control
gains. Authors in [4], [13], proved semi-global asymptotic
stability for an uncertain nonlinear muscle model with the
RISE control law defined as

u(t) = (ks + 1)e2(t)− (ks + 1)e2(0)

+

∫
[(ks + 1)α2e2(τ) + βsgn(e2(τ))]dτ , (8)

where ks, β ∈ R are also positive and adjustable control
gains, and sgn(·) denotes the standard signum function.

III. MATERIAL AND METHODS

Primarily, based on [7], a Matlab/Simulink R© system model
that maps stimulation PW and quadriceps torque, using a
nonlinear second-order dynamics of knee and lower leg,
was developed. Additionally, to perform a more realistic
simulation process including muscle fatigue, tremors and
spasms, the ‘non-idealities’ block from [8] was reproduced
and implemented. Fig. 2 illustrates waveforms of all non-
idealities included at the same time t = 15s as smooth,
moderate and critical to the normalized nominal torque. A
saturation block is attached to the system model to mimic
applications of NMES to patients, bounding control signal
from 0 µs to 1000 µs.

In this paper, the performance of the RISE controller
was evaluated considering both time transient and stationary
responses. From [7], identification parameters corresponding
to three paraplegics (P1-P3) and one healthy (H1) were used
to simulation considering two reference trajectories. The first
one is a sinusoidal trajectory ranging from 12.6◦ to 44.7◦



Fig. 2: Normalized nominal torque with smooth, moderate
and critical non-idealities.

to mimic an isotonic contraction with a repetitive pattern,
and the second one is a 45.82◦ step trajectory replicating an
isometric contraction.

Firstly, simulations will try to tune the RISE controller to
the worst case scenario, i.e., with all non-idealities (fatigue,
tremors, and spasms) included to the model as critical to
finding the best gain parameters. Afterward, with these ‘best’
parameters, it will also be tested to the other cases, which
combines non-idealities as smooth, moderate and the ideal
case with none of them. The motivation to follow this
methodology is that the SCI population generally presents
diagnostics with these problems, which will allow examin-
ing if and how the RISE controller would compensate in
real-world experiments instead of ideal cases. In addition,
simulation results are compared for the empiric and IGA
tuning on ideal conditions.

A. Improved Genetic Algorithm

The proposed IGA to better optimize gains parameters of
the RISE controller is based on the standard methodology of
the greedy randomized adaptive search procedure proposed
by [19], which runs in a multistart framework (k iterations)
and has three mainly steps preprocessing, construction and
local search phases. Firstly, the preprocessing step is applied
to initiate the search efficiently by bounding gain limits.
In the construction phase, we used a simple Fast Genetic
Algorithm (FGA) to generate a good set of solutions named
the Real Initial Population (RIP) to finally run a local search
based on a complete genetic algorithm (CGA). More details
on the GA for control applications are in [20], [21].

The proposed IGA is different to general approaches
of GA in some aspects as encoding, where a solution to
our problem is a chromosome consisting of four real and
positive numbers representing the gains parameters. The
tournament selection procedure is used to determine the
two best chromosomes according to fitness values and a
single-point crossover operator is applied in the middle of
the selected solutions. The mutation algorithm developed to
our problem randomly select one point of each chromosome

(concerning to a mutation rate), add or subtract small or
medium value to this point according to the preprocessing
step, and take its absolute value. Further, as the purpose of
our problem is to optimally stimulate the knee joint to track
a desired reference, a minimization problem is defined as

min : J(α1, α2, ks, β) = RMSE + penalty, (9)

RMSE =

∫ T

0

√
E((θd − θ)2), (10)

penalty =

∫ TR

0

√
E((θd − θ)2), (11)

where T is the whole period and TR is the transient response.
In other words, the main objective is minimizing the Root
Mean Squared Error (RMSE) between the actual and desired
knee angle, penalizing poor transient response aiming to
obtain fast responses with low overshoot. The whole algo-
rithm description is detailed below and Fig. 3 illustrates a
generation of the FGA, where the best solution of this new
population is selected to be part of the RIP.

I Bound gain limits (preprocessing step);
II FGA to generate the RIP (construction phase):

i Define the following initial parameters: size of
population Np (small), number of generations Ng ,
crossover CR and mutation rate MR;

ii Randomly generate the initial population and eval-
uate its fitness value;

iii Select two solutions via tournament selection and
apply the crossover and mutation operators;

iv Substitute only these two solutions in place of the
two worst individuals in the current population;

v Evaluate and select the best individual of this small
population to be a member of the RIP;

vi Repeat steps (iii) to (v) until the algorithm reach the
predefined Ng .

III CGA to improve solutions (local search phase):
i Check for and exclude repeated solutions from RIP;

ii Select two individuals via tournament selection and
apply the crossover and mutation operators;

iii Evaluate if the two new individuals are able to
replace others from population. The individual is
accepted if, and only if it is not equal to another
one in the population, and if it performs better than
the worst individual in the current population;

iv Repeat steps (ii) and (iii) until the algorithm reach
the predefined Ng .

Initial parameters of IGA used in this paper were Np = 10,
Ng = 50 (size of the RIP set), CR = 1, MR = 0.3 and k = 1
iteration. Algorithm performed 30 trials given probabilistic
properties of GA to ensure convergence pattern to global
minimal.

B. Metrics

Different metrics for ideal and nonideal conditions were
considered to both tracking and regulation problems with
±5◦ of tolerance. To the sinusoidal trajectory under ideal



Fig. 3: One generation of the FGA.

conditions, metrics were the lag to the desired and actual
knee angles lag(t); and the RMSE Ermse(deg) between
the desired and actual knee angles. Considering nonideal
conditions, these metrics were the exact time where the
controller could not compensate tracking anymore for at least
5 seconds uncT (t), and the Erms.

For the step trajectory along ideal conditions, these metrics
were calculated as 10%–90% rise time τrise(t); the steady-
state error ess(deg) between the actual and desired knee
angles; the percent overshoot M.O(%) past the steady-state
knee angle; and the 2% settling time τsettling(t). For non-
ideal conditions, these metrics were calculated as the exact
time where the controller could not compensate regulation
anymore for at least 5 seconds uncR(t), Erms, peak angular
position PA(deg) (upper or lower the desired knee angle),
and the time to peak angular position PT (t) respectively.

IV. RESULTS AND DISCUSSION

Tables I and II indicate the metric performances for control
systems obtained from H1, P1, P2 and P3 on ideal conditions
using the empiric and IGA tuning respectively. Similarly,
Tables III-V present the metric performances using the IGA
tuning on nonideal conditions. Fig. 4 illustrates example
results using the empiric and IGA tuning on ideal conditions
for patients H1 and P2 to the sinusoidal trajectory and for
patients P1 and P3 to the step trajectory. Lastly, Fig. 5
presents results for tracking and regulation problems to all
subjects under critical non-idealities using the IGA tuning.

As one can notice from Table I, results for an empirical
tuning approach to the RISE controller could also guarantee
stability (i.e., there are no ess(deg) to the step wave and in
less or equal to 6 seconds the actual knee angle followed
the desired sine wave). However, once gains selections are
immense it is likely to one choose combinations that would
not guarantee the best performance and accuracy during re-
habilitation (e.g., see results in Fig. 4, which were commonly
found in our simulations). The use of an empirical approach
on clinical procedures would present a large amount of
poor performance trying to rehabilitate SCI patients with
NMES/FES by not taking full advantage of the RISE con-
troller that can better compensate with the right selection of
gains. The attempt to improve the rehabilitation procedure
directly affects the well-being of SCI patients providing fast
recovery in the best performance.

TABLE I: Empiric ideal response metrics.

Trajectory Metric H1 P1 P2 P3

Step

τrise(t) 0.6138 0.7995 3.2453 3.0694

ess(deg) 0 0 0 0

M.O(%) 16.687 24.380 0.0289 0.0206

τsettling(t) 6.2046 8.1102 6.5566 6.3417

Sine lag(t) 5.4 6.0 0.8 0.6

Erms(deg) 2.4956 2.8409 0.7007 0.6913

TABLE II: IGA ideal response metrics.

Trajectory Metric H1 P1 P2 P3

Step

τrise(t) 0.3352 0.7628 0.6209 0.2638

ess(deg) 0 0 0 0

M.O(%) 23.894 30.414 9.0326 11.678

τsettling(t) 4.97 7.4267 6.2543 4.9745

Sine lag(t) 4.87 5.3 0.55 1.2

Erms(deg) 2.4413 3.2284 0.6755 0.7308

TABLE III: IGA smooth response metrics.

Trajectory Metric H1 P1 P2 P3

Step

uncR(t) 60 60 44.4 31.4

Erms(deg) 3.8453 4.7022 5.0076 7.5408

PA(deg) 56.8 59.386 18.208 20.714

PT (t) 1.5875 2.455 58.6 58.5

Sine uncT (t) 60 57.1 52.5 52.1

Erms(deg) 2.4531 3.6173 1.6189 2.9452

TABLE IV: IGA moderate response metrics.

Trajectory Metric H1 P1 P2 P3

Step

uncR(t) 60 50.1 40.3 26.9

Erms(deg) 4.1903 6.0676 8.3207 10.058

PA(deg) 29.178 16.555 6.3058 12.741

PT (t) 58.71 58.54 58.5 58.5

Sine uncT (t) 60 53.2 52.2 40

Erms(deg) 2.7362 4.4485 3.6215 4.3497

TABLE V: IGA critical response metrics.

Trajectory Metric H1 P1 P2 P3

Step

uncR(t) 54.3 15.45 33.6 15.2

Erms(deg) 4.8935 7.71 10.325 11.86

PA(deg) 24.863 16.365 3.652 12.049

PT (t) 58.69 56.7 58.5 58.52

Sine uncT (t) 60 52.3 40.3 27.25

Erms(deg) 3.3695 5.6544 4.9096 5.8021



Furthermore, from Table II, one can observe just a few
improvements to IGA tuning compared to the empiric one,
which is due to the fact that the controller was tuned
considering the worst scenario considering practical purposes
instead of the ideal conditions. In this situation, responses
showed great results for paraplegic patients. However, the
results adding non-idealities to the model showed different
muscular behavior. For smooth non-idealities included to the
model patient H1 well compensated the whole period with
very low increment of RMSE (from Erms(deg) = 2.4413◦

to Erms = 2.4531◦), P1 presented small variations and
compensated much better than P2 and P3, where P2 in the
final cycle and P3 in the two final cycles failed on tracking
the sine wave. In moderate and critical scenarios, H1 well
compensated the whole period still with a low increase of
RMSE, P1 full failed on compensating in the last cycle, and
patients P2 and P3 full failed in the last cycles (e.g., see
Fig 5 for system responses to sinusoidal trajectory under
critical non-idealities).

Further, results for the step trajectory considering ideal
conditions lead to zero steady-state error with good per-
formance. Similarly to tracking situations, responses of H1
and P1 with smooth non-idealities are well compensated the
whole period, while P2 and P3 failed on compensating after
44.4 and 31.4 seconds respectively. For moderate and critical
scenarios, H1 could still compensate the whole period in the
first and until 54.3 seconds in the later, P1 presented good
compensation on moderate and poor one on critical situation,
P2 presented problems on compensating after 30 seconds
approximately, and P3 failed compensation after introducing
the non-idealities in 15 seconds (e.g., see Fig 5 for system
responses to the step trajectory under critical non-idealities).

In all cases, transient response presented interesting re-
sults, where it seems that stronger muscles present big-
ger overshoot. However, strong muscles demonstrate less
sensitivity to external disturbances modeled in this paper.
Moreover, responses are according to reality where a healthy
patient even in spite of non-idealities could track and regulate
the angular position very well; an SCI patient with strong
muscles (P1, as informed in [7]) could also compensate, but
not as well as a healthy one; and SCI patients with weak
muscles do not reach well tracking and regulating results
with non-idealities in the model. As commented before, it
can be due to numerous factors that some papers did not take
into account the existing problems with the SCI population
assuming that results would be the same for healthy patients.

It is worth to highlight that, responses to the step and
sine wave trajectories are very similar to real experiments on
SCI patients and healthy ones reported in the literature [4]–
[7], [12], [13], proving the effectiveness of simulating knee-
joint and non-idealities that are regularly encountered on
the real world. Thus, our methodology is based on simula-
tion procedures optimizing a control task by an intelligent
technique before implementing a controller on real tests.
Moreover, this method will provide a lot of information about
human identified system behavior to NMES/FES, permitting
to avoid unfeasible cases, to save time and resources. Another

highlight to simulation procedures is that one can try to the
extreme case scenario before really implement on the real
world, to guarantee controller robustness and a bigger space
to cover feasibility, as performed in this paper.

Fig. 4: Analysis of system responses using empiric and IGA
tuning on ideal conditions.

Fig. 5: Analysis of system responses using IGA tuning
considering critical non-idealities.



V. CONCLUSION

Aiming to propose an improved genetic algorithm to
cover the lack of intelligent techniques and better tune the
parameters of the RISE controller, this paper focused on
the attempt to improve the lower limb tracking control of
SCI patients via NMES. Simulations results for tracking and
regulation problems on ideal and nonideal conditions were
presented for three identified SCI patients and one healthy
from [7]. As hypothesized in this paper, control performance
can be improved via the proposed procedure, by selecting
adequately the gain parameters of the RISE controller instead
of an empirical tuning, avoiding premature fatigue and other
problems of SCI patients during rehabilitation.

Considering that the RISE control method presented a
good performance for healthy patients in [4], [6], [12]–[17]
without any fine-tuning method, we believe that results can
be improved making use of our proposal. Therefore, we
intend to design this controller on the original and improved
way (i.e., to better deal with SCI patients), planning to
evaluate and validate this proposal with experimental results.
Moreover, as clearly highlighted in the literature, we are
aware that a good nonlinear system identification will be
necessary to model the knee-joint before put it on an offline
controller optimizer to achieve fine-tuned parameters and
continue the rehabilitation procedure in the best performance.
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