A Novel Robust and Intelligent Control Based Approach for Human Lower Limb Rehabilitation via Neuromuscular Electrical Stimulation

Student: Héber Hwang Arcolezi Advisor: Prof. Dr. Aparecido Augusto de Carvalho Laboratório de Instrumentação e Engenharia Biomédica

August 19, 2019

MASTER THESIS DEFENSE

Table of Contents

- 1. Introduction
 - Context of the problem; Motivations; Objectives and hypotheses.
- 2. Proposed methodology and theoretical background

RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).

3. Simulation results (mathematical model)

Humanlowermathematical model;Materials and methods;Results and discussion.

4. Experimental results (NN models)

Materials and methods; Results and discussion; Conclusion.

- Deep and dynamic NNs for
 system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.
- 6. General conclusions Future works; Publications.

limb

5.

3.

Table of Contents

1. Introduction

Context of the problem; Motivations; Objectives and hypotheses.

2. Proposed methodology and theoretical background

RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).

Simulation results (mathematical model)

Human lower mathematical model; Materials and methods; Results and discussion. 4. Experimental results (NN models) Materials and methods; Results and discussion; Conclusion.

Deep and dynamic NNs for
 system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.

6. General conclusions Future works; Publications.

5.

Introduction

- Context of the problem
- Human lower limb rehabilitation for spinal cord injured patients:
- Temporary or permanent changes in spinal cord function.
- > Total or partial paralysis.
- > Muscles atrophies and spasms.
- Often irreversible.

Inability to complete daily and/or occupational activities.

LOSS OF BLADDER AND BOWEL CONTROL LOSS OF BODY TEMPERATURE CONTROL MENTAL HEALTH CHALLENGES LOSS OF TOUCH SENSATION LOSS OF SEXUAL FUNCTION DIGESTIVE HEALTH ISSUES BREATHING DIFFICULTIES CARDIOVASCULAR RISK PRESSURE SORES INFECTION RISK SPASMS PAIN

unes

Introduction

- Context of the problem
- Key facts provided by the World Health Organization (WHO):
- Every year, around the world, 250.000 to 500.000 people suffer SCI.
- The majority of SCIs are due to traumatic causes.
- People with a SCI are two to five times more likely to die prematurely.
 - **Even worse** survival rates in low- and middle-income countries.

Introduction

• Context of the problem

Neuromuscular/Functional Electrical Stimulation (NMES/FES):

- Applies a potential field across the muscle to achieve the desired muscle contraction.
- Rehabilitation and strength training tool.

Increases strength and range Motion sensors of motion.

Introduction

• Main motivation

Commercial stimulators are available in open-loop, while real-world NMES/FES systems to rehabilitate SCI patients require control strategies that compensate for:

- **Modeling errors** in the plant.
- System's fault.
 - Individuals muscle's behavior.
- External disturbances.
- Nonideal muscles conditions.

unes

unesp*

Introduction

• Specific motivations

Robust Integral of the Sign of the Error (RISE):

- **Continuous** and **robust** technique for **uncertain** nonlinear systems.
- > Asymptotic tracking even in spite of:
 - **bounded smooth external disturbances;**
 - **bounded modeling uncertainties.**
- Implicit learning characteristics.
- However, the controller parameters adjustment is the key factor.

Question

As well as for many empirical controllers, how to select the gain parameters of the RISE controller?

unes

Introduction

• Specific motivations

RISE controller for lower limb tracking control.

Authors and years	Validation	Tuning	
Stegath et al. (2007, 2008)	2 healthy subjects	Not informed	
Sharma et al. (2009, 2012)	5 and 9 healthy subjects	Not informed	
Kawai et al. (2014)	Simulation	Adjusted by simulation	
Kushima et al. (2015)	7 healthy subjects	Not informed	
Downey et al. (2015b)	4 healthy subjects	Pretrial tests	

MOTIVATIONS:

Lack of intelligent techniques (empiric tuning).
 Experiments only (if done) with healthy subjects.

Introduction

• General and specific objectives

To propose a novel robust and intelligent control-based methodology to human lower limb rehabilitation via NMES/FES.

Specific objectives:

- Propose an improved genetic algorithm (IGA).
- Simulation and experimental results.
- > Use of past rehabilitation data.
- Deep and dynamic neural networks for system identification.

Introduction

• Hypotheses

Empirical tuning: a large number of poor performances VS

Adequate tuning with a more representative identified model: better tracking control of the lower limb.

The of use past rehabilitation data for identifying a patient: the model will improve the of description the relationship between angular position and the delivered electrical stimulus.

3.

Table of Contents

1. Introduction

Context of the problem; Motivations; Objectives and hypotheses.

2. Proposed methodology and theoretical background

RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).

Simulation results (mathematical model)

Human lower mathematical model; Materials and methods; Results and discussion. 4. Experimental results (NN models) Materials and methods; Results and discussion; Conclusion.

Deep and dynamic NNs for
 system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.

6. General conclusions Future works; Publications.

5.

Proposed methodology

unesp*

Theoretical background

• **RISE control development**

The **RISE** controller yields an asymptotic stability result despite an uncertain nonlinear muscle model and in the presence of additive bounded disturbances.

Control law: $u = (k_s + 1)e_2 - (k_s + 1)e_2(0) + \int [(k_s + 1)\alpha_2 e_2(\tau) + \beta sgn(e_2(\tau))d\tau]$ $\dot{u} = (k_s + 1)r + \beta sgn(e_2)$

- Preprocessing step (bound gain limits).
- Construction phase (fast genetic algorithm).
 - Local search phase (complete genetic algorithm).

min : $J(\alpha_1, \alpha_2, k_s, \beta) = RMSE + penalty$

 \succ

Theoretical background

• System identification via NNs

The system identification problem is as follow: We have observed inputs, u(k), and observed outputs, y(k), from a discrete dynamical system.

 $u^{k} = [u(1), u(2), \dots, u(k)]$ $y^{k} = [y(1), y(2), \dots, y(k)]$

where we are looking for a relationship between past observations $[u^{k-1}, y^{k-1}]$ and future output, y(k). Below, f(.) is an unknown nonlinear difference equation that represents the plant dynamics.

$$y(k) = f[y(k-1), ..., y(k-n); u(k-1), ..., y(k-n)]$$

where *F* is the model structure (e.g., the NN or machine learning tools).

Theoretical background

• System identification via NNs

Why black-box models?

- Much simpler than physical modeling.
- Lack of knowledge of the underlying physiology.
- When physical knowledge is too complex.

unes

- Big data (easy collection and storage).
- > **Powerful** computation.

Theoretical background

• System identification via NNs

Why neural networks?

- ➢ For every patient, the number of data will increase during rehabilitation sessions.
 - □ As more data become available more accurate the model becomes.
 - Thus, muscular variability and nonlinear behavior over days will be detected (fatigue, tremors, spasms, etc).
 - Are easier to train than: 1) mathematically modeling the knee joint dynamics; 2) executing tests for identifying parameters.

Table of Contents

- 1. Introduction
 - **Context of the problem; Motivations; Objectives and hypotheses.**
- 2. Proposed methodology and theoretical background RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).
- 3. Simulation results (mathematical model)

Humanlowermathematical model;Materials and methods;Results and discussion.

- 4. Experimental results (NN models) Materials and methods; Results and discussion; Conclusion.
 - Deep and dynamic NNs for
 system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.
- 6. General conclusions Future works; Publications.

limb

5.

Simulation results (mathematical model) Human lower limb

Lynch (2011) developed a model describing the relationship between electrical stimulus and joint torque with nonideal muscle conditions.

$$J\ddot{\theta} = \tau_{gravity} + \tau_{stiffness} + \tau_{damp} + \underline{\upsilon}$$

$$\tau_{gravity} = -mgl\sin\theta$$

$$\tau_{stiffness} = \lambda e^{-E(\theta + \frac{\pi}{2})}(\theta + \frac{\pi}{2} - \omega)$$

$$\tau_{damp} = -B\dot{\theta}$$

$$\underline{\upsilon} = (1 + spm + tr)(M_a)fat$$

$$M_a = \frac{G}{1 + \eta s}PW_{quad}(s)$$
MASTER THES

Source: Adapted from Ferrarin and Pedotti (2000)

Simulation results (mathematical model)

Materials and methods

Simulation results (mathematical model)

• Results and discussion

Empiric VS IGA tuning (ideal conditions):

Empiric gains can also lead to stability. However, as gains selection are immense it is likely to one choose combinations that would not guarantee the best performance.

• Results and discussion

Responses of healthy and paraplegic subjects with IGA tuning (critical nonideal conditions)

- In all cases, transient response presented interesting results, where stronger muscles result in bigger overshoot.
- However, strong muscles demonstrate less sensitivity to external disturbances modeled in this research.

Simulation results (mathematical model)

• Results and discussion

Simulation responses are according to real-world applications.

- Healthy subjects even in spite of non-idealities could track and regulate very well.
- An SCI patient with strong muscles (P1) also presented good results, but not as well as a healthy one.
- SCI patients with weak muscles do not reach well tracking and regulation results with non-idealities in the model.

Simulation systems provide a lot of information about human identified behavior to NMES/FES, permitting to save time and resources.

- 1. Introduction
 - **Context of the problem; Motivations; Objectives and hypotheses.**
- 2. Proposed methodology and theoretical background

RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).

3. Simulation results (mathematical model)

Human lower mathematical model; Materials and methods; Results and discussion. 4. Experimental results (NN models)

Materials and methods; Results and discussion; Conclusion.

- Deep and dynamic NNs for
 system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.
- 6. General conclusions Future works; Publications.

5.

- Instrumentation
- Neuromuscular electrical stimulator allows a control adjustment of PW in a range of 0-400µs.
- Stimulus frequency was fixed in 50 Hz and the pulse amplitude in 80 mA (healthy subjects) or 120 mA (paraplegic patients).
- unesp*
- Surface electrodes with rectangular self-adhesive CARCI 50 mm x 90 mm.

Experimental results (NN models) • Analyzed individuals

The study with volunteers was authorized through a research ethics committee (CAAE 79219317.2.1001.5402) at UNESP and before the participation, written informed consent was obtained from all participants.

	H1	H2	H3	H4	Н5	H6	H7	P1	P2
Age (years)	24	28	27	22	22	28	25	32	43
Weight (kg)	74.1	70.4	75	94.3	73	68.8	78.3	70.0	96.0
Height (cm)	174	167	180	186	175	170	165	170	183
Injury level	-	-	-	-	-	-	-	L4, L5	C5, C6
Injury time	-	-	-	-	-	-	-	9 years	17 years

Specific data on analyzed individuals.

- Experimental set-up
- The chair backrest and the knee joint position are adjusted for each volunteer to ensure patients comfort.
- > Muscle analysis to determine the motor point.
- A few open loop tests applying a step-type signal.

□ Determine a bounded pulse width band ρ_{min} to ρ_{max} , concerning to $\theta_{min} = 10^{\circ}$ and $\theta_{max} = 40^{\circ}$.

- Experimental set-up: 1st session
- → A stimulation test is carried out consisting of one minute of randomly selected PW in the predetermined range (ρ_{min}, ρ_{max}) per individual, being each value applied during minimum four and maximum seven seconds (also random).

- Experimental set-up: 1st session
- The identification data is read and manipulated for feeding up an MLP feedforward NN with one hidden layer.

Featur	es	Target
Angular_Position $(k-1)$	Pulse_Width $(k-1)$	Angular_Position (k)
13.348546°	215µs	13.399383°
13.399383°	215µs	13.382377°
13.382377°	215µs	13.325167°
13.325167°	215µs	13.306247°
13.306247°	215µs	13.347835°
13.347835°	$248 \mu s$	13.387653°
13.387653°	$248 \mu s$	13.357460°
13.357460°	$248 \mu s$	13.256510°
13.256510°	$248 \mu s$	13.131691°
13.131691°	$248 \mu s$	13.016152°

Example of how datasets are encoded.

- Experimental set-up: 1st session
- Optimization procedure based on the proposed IGA to find the best gains combination for two reference trajectories.

□ Sinusoidal trajectory (10° to 40°) to mimic an isotonic contraction.

Step trajectory (40°) replicating an isometric contraction.

Lastly, using empiric gains and then IGA gains, the controlling procedure is implemented for both trajectories.

- Experimental set-up: two up to five sessions
- For all individuals, data from previous rehabilitation sessions are used for training a NN model in an offline scheme.
- IGA optimization to find the best gains combination for both sine and step trajectories.
- Electrodes are positioned at the motor-point identified in the first session, and similar open-loop tests are made.
 - **Determine** (ρ_{min}, ρ_{max}) concerning to $\theta_{min} = 10^{\circ}$ and $\theta_{max} = 40^{\circ}$.

➢ Knowing fine-tuned gains for each individual, the controlling procedure is made for both references, and then with empiric gains.

Experimental results (NN models) Results and discussion: Individual P1

> Patient P1 participated in one session.

Technical information on experiments for individual P1.

Identification		Empiric			Sine IGA	Step IGA		
$\rho_{min};\rho_{max}$	$\theta_{min}; \theta_{max}$	$\rho 0;sat$	$\alpha_1;\alpha_2;ks;\beta$	ρ0;sat	$\alpha_1;\alpha_2;ks;\beta$	$\rho 0$;sat	$\alpha_1;\alpha_2;ks;\beta$	
200;250	18;50	200;350	1;2;30;5	180;300	2.61;3.34;48.94;1.78	180;300	2.72;3.57;47.12;1.54	
Identification results for individual P1.								

Identification results for individual P1.

 Session
 TT
 Corr
 MSE

 1st
 28(s)
 0.836
 0.0019

Metrics on experimental results for individual P1.

	Sine				Step			
	Empiric		IGA		Empiric		IGA	
Session	RMSE	TEC	RMSE	TEC	RMSE	TEC	RMSE	TEC
1st	9.1471°	30(s)	2.9842°	30(s)	10.9950°	30(s)	5.9786°	25(s)

Experimental results (NN models) Results and discussion: Individual P1

IGA gains

empiric gains

• Results and discussion: Individual P1

Experimental results (NN models) • Results and discussion: Individual P1

- Results and discussion: Individual P2
- > Patient P2 participated in one session.

Technical information on experiments for individual P2.

Identification E			npiric		Sine IGA			Step IGA	
in; ρ_{max}	$\theta_{min}; \theta_{max}$	ρ0;sat	$\alpha_1;\alpha_2;ks;\beta$	ρ0;sat	$\alpha_1; \alpha$	[/] 2;ks;β	$\rho 0$;sat	$\alpha_1;\alpha_2;ks;\beta$	-
50;250	8;38	200;370	1;2;30;5	185;310	2.22;3.54	;39.50;1.40	190;360	3.01;1.91;48.34;2.65	_
		Id	lentificatio	on result	ts for ind	lividual F	2.		
		_	Session	TT	Corr	MSE	-		
		-	1st	33(s)	0.796	0.0032	_		
		Metrics	on experi	imental	results f	or individ	dual P2.		
			Sine				Ste	р	
	En	npiric		IGA		Empir	ic	IGA	

TEC

30(s)

RMSE

 10.1067°

TEC

23(s)

RMSE

11.2966°

1st

TEC

30(s)

RMSE

10.7306°

RMSE

6.6134°

TEC

21(s)

• Results and discussion: Individual P2

Experimental results (NN models) Results and discussion: Individual P2

Experimental results (NN models) Results and discussion: Individual P2

Experimental results (NN models) • Results and discussion: SCI patients

- The proposed methodology could be effectively applied to clinical procedures for treating SCI patients via NMES/FES.
- The RMSE for the sine wave from P1 is the best result achieved in all experiments made during this research.
- It is notable premature fatigue for paraplegic patients (less than 30 seconds) due to electrical stimulus.
- **Results from P1 and P2 validate the first hypothesis.**

- Results and discussion: healthy patients
- Time of stimulation greater than presented in the literature (at most 45 seconds), getting to 60 seconds in many stimulation sessions.
- **Took more time to fatigue due to NMES/FES.**

- The use of an empirical approach on clinical procedures presents several poor performances, wherein most of the tests, the control stimulated lower limb did not track the reference angle.
- Alternatively, by using the proposed methodology, for all patients, satisfactory and suitable tracking results were acquired for both situations.
- Additionally, as sessions passed by, it was noticed an improvement of tracking results for some individuals.

IGA gains

unesp

- 1. Introduction
 - **Context of the problem; Motivations; Objectives and hypotheses.**
- 2. Proposed methodology and theoretical background

RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).

3. Simulation results (mathematical model)

Human lower mathematical model; Materials and methods; Results and discussion.

- 4. Experimental results (NN models) Materials and methods; Results and discussion; Conclusion.
 - Deep and dynamic NNs for
 system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.
- 6. General conclusions Future works; Publications.

5.

- An efficient mapping describing the relationship between the muscular model and stimulation parameters.
- Investigate more sophisticated neural network architectures to propose better control-oriented models.
- Three specific architectures are investigated namely the MLP, a simple RNN, and the LSTM.

Deep and dynamic NNs for sys. ident.NN models

Deep and dynamic NNs for sys. ident.NN models

LSTMs: contain interacting layers that control information flow

LSTMs: key concepts

- Maintain a separate cell state from what is outputted
- Use gates to control the flow of information
- Backpropagation from c_t to c_{t-1} doesn't require matrix multiplication : uninterrupted gradient flow

LSTM gradient flow

Backpropagation from C_t to C_{t-1} requires only elementwise multiplication! No matrix multiplication \rightarrow avoid vanishing gradient problem.

 $y_{(t)} = h_{(t)} = o_{(t)} \otimes \tanh(c_{(t)})$

- Feature extraction and data encoding
- The StandardScaler method from the scikit-learn library was applied to re-scale the distribution of values to zero mean and unit variance.

	Angular_Position(t-1)	Pulse_Width(t-1)	Angular_Position(t)
1	-2.078177	-1.628839	-2.078177
2	-2.078177	-1.628839	-2.077933
3	-2.077933	-1.628839	-2.076678
4	-2.076678	-1.628839	-2.073245
5	-2.073245	-1.628839	-2.066889
6	-2.066889	-1.628839	-2.058281
7	-2.058281	-1.628839	-2.049395
8	-2.049395	-1.628839	-2.041484
9	-2.041484	-1.628839	-2.032742
10	-2.032742	-1.628839	-2.018480

• Results and discussion

unesp

3000

2500

• Results and discussion

Sample

unesp

• Results and discussion

Sample

MASTER THESIS DEFENSE

- Results and discussion
- The identified models indicate good fitting to data and very low RMSE metric for all individuals.
- The proposed methodology (based on an offline controller optimizer) using a better model will provide more realistic simulation.
- Consequently, better tuning of the RISE controller for each SCI patient in clinical procedures will be acquired.
- Saving every rehabilitation data from a patient, such deep and dynamic NNs can improve the mapping for each patient with the electrical stimulus as sessions pass by.

- 1. Introduction
 - **Context of the problem; Motivations; Objectives and hypotheses.**
- 2. Proposed methodology and theoretical background
 - RISE control development; Improved genetic algorithm; System identification via neural networks (NNs).
- 3. Simulation results (mathematical model)
 - Humanlowermathematical model;Materials and methods;Results and discussion.

- 4. Experimental results (NN models) Materials and methods; Results and discussion; Conclusion.
 - Deep and dynamic NNs for system identification
 Neural network methods
 (MLP, RNN, LSTM);
 Model selection;
 Feature extraction, data encoding;
 Results and discussion.
- 6. General conclusions Future works; Publications.

5.

General Conclusions

- The proposed methodology was experimentally implemented with seven healthy individuals and two paraplegic patients.
- For the first time, real experiments are made with SCI patients using the RISE controller.
- Models approximate of real applications with nonideal conditions (fatigue, tremors, and spasms) using past rehabilitation data.
- The proposed simulation system allows liberty of studying the system's response using more sophisticated control-oriented NN models, and to improve/test different control laws.

General Conclusions

- Future works
- Deeper validation using the proposed methodology with SCI patients during more sessions.
- Implement the proposed deep and dynamic neural networks as controlorient models for simulations.
- Investigate combinations of deeper and dynamic NNs (recurrent and convolutional) and implement it.

Investigate fundamentally similar control laws or improvements to the RISE control law.

General Conclusions

• Publications

ARCOLEZI, H. H.; NUNES, W. R. B. M.; ÑAHUIS, S. L. C.; SANCHES, M. A. A.; TEIXEIRA, M. C. M.; CARVALHO, A. A. de. A RISE-based Controller Fine-tuned by an Improved Genetic Algorithm for Human Lower Limb Rehabilitation via Neuromuscular Electrical Stimulation. In: 6th International Conference on Control, Decision and Information Technologies (CODIT). CoDiT, 2019.

Extended versions of this research are planned to be submitted on the "Advanced Engineering Informatics" Journal (Elsevier, Impact Factor: 3.358) with preceding publications at a brazilian conference as:

- ARCOLEZI, H. H.; NUNES, W. R. B. M.; ARAUJO, R. A. de; SANCHES, M. A. A.; TEIXEIRA, M. C. M.; CARVALHO, A. A. de. A Robust and Intelligent RISE-based Control for Human Lower Limb Tracking via Electrical Stimulation. In: XIV Conferência Brasileira de Dinâmica, Controle e Aplicações (DINCON). DINCON, 2019.
- ARCOLEZI, H. H.; NUNES, W. R. B. M.; CERNA, S.; ARAUJO, R. A. de; SANCHES, M. A. A.; TEIXEIRA, M. C. M.; CARVALHO, A. A. de. On the Ability to Identify the Knee Joint Position Under Neuromuscular Electrical Stimulation Using Long Short-Term Memory Neural Networks. In: XIV Conferência Brasileira de Dinâmica, Controle e Aplicações (DINCON). DINCON, 2019.

References

FERRARIN, M.; PEDOTTI, A. The relationship between electrical stimulus and joint torque: a dynamic model. *IEEE Transactions on Rehabilitation Engineering*, Institute of Electrical and Electronics Engineers (IEEE), v. 8, n. 3, p. 342–352, 2000. Available in: https://doi.org/10.1109/86.867876>.

LYNCH, C. L. *Closed-Loop Control of Electrically Stimulated Skeletal Muscle Contractions*. Tese (Doutorado) — University of Toronto, 2011.

SHARMA, N.; GREGORY, C. M.; JOHNSON, M.; DIXON, W. E. Closed-loop neural network-based NMES control for human limb tracking. *IEEE Transactions on Control Systems Technology*, Institute of Electrical and Electronics Engineers (IEEE), v. 20, n. 3, p. 712–725, may 2012. Available in: https://doi.org/10.1109/tcst.2011.2125792>.

SHARMA, N.; STEGATH, K.; GREGORY, C.; DIXON, W. Nonlinear neuromuscular electrical stimulation tracking control of a human limb. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, Institute of Electrical and Electronics Engineers (IEEE), v. 17, n. 6, p. 576–584, dec 2009. Available in: https://doi.org/10.1109/tnsre.2009.2023294>.

STEGATH, K.; SHARMA, N.; GREGORY, C. M.; DIXON, W. E. Experimental demonstration of RISE-based NMES of human quadriceps muscle. In: 2007 *IEEE/NIH Life Science Systems and Applications Workshop*. IEEE, 2007. Available in: <https://doi.org/10.1109/Issa.2007.4400880>.

XIAN, B.; DAWSON, D.; QUEIROZ, M. de; CHEN, J. A continuous asymptotic tracking control strategy for uncertain multi-input nonlinear systems. In: *Proceedings of the 2003 IEEE International Symposium on Intelligent Control ISIC-03*. IEEE, 2003. Available in: .

XIAN, B.; QUEIROZ, M. S.; DAWSON, D. M. A continuous control mechanism for uncertain nonlinear systems. In: *Optimal Control, Stabilization and Nonsmooth Analysis*. Springer Berlin Heidelberg, 2004. p. 251–264. Available in: https://doi.org/10.1007/978-3-540-39983-4_16>.

SC RE Professional

https://screproject.com/evidence/renabilitation-evidence/lower-limb/electrical-stimulation-to-enhance-lower-limb-muside-function/func/

Thank you for your attention!!!

Student: Héber Hwang Arcolezi Advisor: Prof. Dr. Aparecido Augusto de Carvalho Laboratory: Instrumentation and Biomedical Engineering (LIEB)

MASTER THESIS DEFENSE