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Differential Privacy (DP)1

• Centralized setting of DP.

• Interpretation: The addition

(or removal) of anyone’s

record has a minimal (ϵ)

influence on the outcome.

• Small ϵ → stronger privacy

• ϵ → a.k.a. “privacy budget”

• Robust to post-processing.
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1 Dwork, C., Roth, A. The algorithmic foundations of differential privacy. Foundations and

Trends in Theoretical Computer Science (3–4), 211–407 (2014).
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Amplification by Sampling2

• Randomly subsample the

database w/ sampling rate 𝛽.

• Interpretation: an attacker is

unable to distinguish which

data samples were used in

the analysis.

• Amplification: 𝜖′ ≥ 𝜖

• 𝜖 = ln 1 + 𝛽 𝑒𝜖′ − 1
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2 Ninghui Li, Wahbeh Qardaji, and Dong Su. On sampling, anonymization, and differential

privacy or, k-anonymization meets differential privacy. ASIACCS’12 (2012).
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Local Differential Privacy (LDP)3
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• Local setting of DP.

• Interpretation: Any two

items have close probability

(controlled by 𝜖) to be

mapped to the same

perturbed value.

• Several LDP

implementation in practice.

3 Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A. What can we

learn privately? In: 49th Annual FOCS (2008).
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Randomized Response (RR)4

• Motivated by surveying people on sensitive topics.

• Main idea → Providing deniability to users’ answer (yes/no → binary).

• Survey people: “Are you a member of the communist party?”

• Each person:

• Throw a secret coin:

• If tail throw the coin again (ignoring the outcome) and answer
the question honestly.

• If head, then throw the coin again and answer “Yes” if head,
“No” if tail.

4 Warner, S.L. Randomized response: A survey technique for eliminating evasive answer bias.

Journal of the American Statistical Association, 1965.
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• 𝑂𝑦 → proportion of observed yes

• 𝑂𝑦 ≈
1

2
𝑡𝑦 +

1

4
𝑛

• 𝑡𝑦 → proportion of true yes

• 𝑡𝑦 ≈ 2𝑂𝑦 −
1

2
𝑛

• Satisfies LDP w/:

• 𝜖 = ln Τ0.75
0.25 = ln 3

RR’s Unbiased Frequency Estimation

prob. of ‘being honest’

prob. of ‘lying’
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Problem Statement

• Key Issue: Collecting multidimensional data under 𝜖-LDP for the

fundamental task of frequency estimation.

• More formally (notation):

• d attributes 𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑑 ;

• Each attribute 𝐴𝑗 has a discrete domain 𝐷𝑗 of size |𝐷𝑗| = 𝑘𝑗;

• Each user 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 has a tuple 𝑣𝑖 = 𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑑
𝑖 ;

• Analyzer: estimate a 𝑘𝑗-bins histogram for each attribute 𝑗 ∈ [1, 𝑑].

𝐴1 𝐴2 𝐴𝑑

...
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Protocols for Single Frequency Estimation

• Generalized RR (GRR)5: Extends RR to the case of 𝑘𝑗 ≥ 2.

∀𝑦∈ 𝐷𝑗 𝑃𝑟 𝜓𝐺𝑅𝑅 𝜖 𝑣 = 𝑦 =
𝑝 =

𝑒𝜖

𝑒𝜖+𝑘𝑗−1
, 𝑖𝑓 𝑦 = 𝑣

𝑞 =
1

𝑒𝜖+𝑘𝑗−1
, 𝑖𝑓 𝑦 ≠ 𝑣

𝜖 = ln
𝑝

𝑞

• Optimized Unary Encoding (OUE)6: Encode as a bit-vector 𝐵 and 

perturb each bit independently into a new bit-vector B’. More specifically:

𝑃𝑟 𝐵′𝑖 = 1 = ቐ
𝑝 = Τ1 2 , 𝑖𝑓 𝐵𝑖 = 1

𝑞 =
1

𝑒𝜖+1
, 𝑖𝑓 𝐵𝑖 = 0

𝜖 = ln
𝑝(1−𝑞)

𝑞(1−𝑝)

5 Kairouz, P., Bonawitz, K. and Ramage, D. Discrete distribution estimation under local

privacy. In International Conference on Machine Learning (2016).
6 Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency

estimation. In 26th USENIX Security Symposium (2017).
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Protocols for Single Frequency Estimation

• Unbiased Estimator: To estimate the frequency 𝑓 𝑣𝑖 that a value 𝑣𝑖
occurs for 𝑖 ∈ [1, 𝑘𝑗] one calculates

መ𝑓 𝑣𝑖 =
𝑁𝑖−𝑛𝑞

𝑛(𝑝−𝑞)
, 𝑁𝑖 = number of times the value (or bit) i has been reported.

• Approximate Variances:

𝑉𝑎𝑟 መ𝑓𝐺𝑅𝑅(𝑣𝑖) =
𝑒𝜖+𝑘𝑗−2

𝑛(𝑝−𝑞)2
𝑉𝑎𝑟 መ𝑓𝑂𝑈𝐸(𝑣𝑖) =

4𝑒𝜖

𝑛(𝑝−𝑞)2

• Adaptive LDP protocol6: Given 𝑘𝑗 , 𝑝, 𝑞, 𝑎𝑛𝑑 𝜖

𝐴𝐷𝑃 = ቊ
𝐺𝑅𝑅 𝑖𝑓 𝑘𝑗 < 3𝑒𝜖 + 2

𝑂𝑈𝐸 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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What is the state-of-the-art?
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Why not Smp?

...

(un)trusted

curator
Database

Example:

• Smp[ADP] → (attribute, 𝜖-LDP value)

• Application scenario: health data

• 𝜖 = 2, 𝑑 = 3 attributes: age (𝑘1 = [1,… , 100]),
gender (𝑘2 = [M, F]), and HIV (𝑘3 = [P, N]). [Age, 90] [Gender, M] [HIV, P]

GRR for attributes with small domain

OUE otherwise

𝑝𝑔𝑟𝑟 =
𝑒𝜖

𝑒𝜖+𝑘𝑗−1
≈ 0.88 (probability of ‘being honest’)

𝑞𝑔𝑟𝑟 =
1−𝑝𝑔𝑟𝑟

𝑘𝑗−1
≈ 0.12 (probability of ‘lying’)

I will not share 

this attribute!

...
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RS+FD: Random Sampling + Fake Data

RS+FD
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RS+FD[GRR]

መ𝑓 𝑣𝑖 =
𝑁𝑖𝑑𝑘𝑗 − 𝑛 𝑑 − 1 + 𝑞𝑘𝑗

𝑛𝑘𝑗(𝑝 − 𝑞)
Aggregator → For each attribute, estimate:



14

RS+FD[OUE-z]

Aggregator → For each attribute, estimate: መ𝑓 𝑣𝑖 =
𝑑(𝑁𝑖 − 𝑛𝑞)

𝑛 (𝑝 − 𝑞)
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RS+FD[ADP]

• Let VAR1 = VARRS+FD[GRR] and VAR2 = VARRS+FD[OUE−z]

• For each attribute, given d, 𝑘𝑗, and ϵ′, select RS+FD[GRR] if:

VAR1 ≤ VAR2, i.e., if VAR1 − VAR2 ≤ 0

• Let n = 10000, d ∈ [2, 10], 𝑘𝑗 ∈ [2, 20], and ϵ′ = ln(3)
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• Datasets:

• Nursery7: n = 12960, d = 9, 𝐤 = [3,5,4,4,3,2,3,3,5]

• Adults7: n = 45422, d = 9, 𝐤 = [7,16,7,14,6,5,2,41,2]

• MS-FIMU8: n = 88935, d = 6, 𝐤 = [3,3,8,12,37,11]

• Census-Income7: n = 299285, d = 33, 𝐤 = [9,52,47,17, … , 3,3,2]

• Evaluation: ϵ = [ln(2), ln(3), ..., ln(7)].

• Metric:

MSE𝑎𝑣𝑔 =
1

𝑑
෍

𝑗∈[1,𝑑]

1

|𝐷𝑗|
෍

𝑣𝑖∈𝐷𝑗

𝑓 𝑣𝑖 − መ𝑓(𝑣𝑖)
2

Experiments

7 Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository:

http://archive.ics.uci.edu/ml/index.php
8 Arcolezi, H.H., Couchot, J.F., Baala, O., et al. Mobility modeling through mobile data:

generating an optimized and open dataset respecting privacy. In 16th IWCMC (2020).
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Results

Census-Income7: n = 299285, d = 33, 𝐤 = [9,52,47,… , 3,2]

Nursery7: n = 12960, d = 9, 𝐤 = [3,5,4,4,3,2,3,3,5] Adults7: n=45422, d=9, 𝐤=[7,16,7,14,6,5,2,41,2]

MS-FIMU8: n = 88935, d = 6, 𝐤 = [3,3,8,12,37,11]



18

Conclusions

• We propose a generic framework RS+FD for multidimensional frequency

estimates under LDP with theoretical proofs.

• RS+FD achieves nearly the same or better utility than Smp with higher

privacy protection (uncertainty).

• Limitations:

• Sampling error + noise from fake reports;

• More computation and communication cost than Smp.

• Perspectives:

• Cast other LDP protocols into RS+FD;

• Attack: is it possible to state which attribute value is “fake”?
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Thank you very much for your attention!!!

Questions?

Codes → https://github.com/hharcolezi/ldp-protocols-mobility-cdrs

Contact → heber.hwang_arcolezi@univ-fcomte.fr

https://github.com/hharcolezi/ldp-protocols-mobility-cdrs

