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Introduction



Privacy and Why Do We Need It?

Privacy:

• Human right*;

• Not a new issue, aggravated by Big Data;

• Legitimate but harmful use of users’ information**;

• Illegitimate access or massive data breaches***;

* https://www.un.org/en/about-us/universal-declaration-of-human-rights
** https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
*** https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Societal Impact:

• Public health;

• National security;

• Development;

• Governance...
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Privacy and Why Do We Need It?

Privacy:

• Human right*;

• Not a new issue, aggravated by Big Data;

• Legitimate but harmful use of users’ information**;

• Illegitimate access or massive data breaches***;

• There is a need for privacy-preserving systems;

• A balance needs to be found between privacy and utility.

* https://www.un.org/en/about-us/universal-declaration-of-human-rights
** https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
*** https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Societal Impact:

• Public health;

• National security;

• Development;

• Governance...

Privacy Utility
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Privacy Notions: Syntactic vs Algorithmic

* Sweeney, L. k-anonymity: A model for protecting privacy. In: International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems (2002).
** Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M. l-diversity: Privacy beyond k-

anonymity. In: ACM Transactions on Knowledge Discovery from Data (2007).
*** Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends

in Theoretical Computer Science (2014).

Algorithmic*** Syntactic*, **

Input data Algorithm Output data

Privacy may 

break down if 

the attacker has 

supplementary 

knowledge.

2/47



The Trust Model: Centralized vs Local 

u1

u2

un

Database
Post-

processing

Users
(Un)trusted

curator

Public

user

…

Centralized setting Local setting
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Use of Big Data for Mobility Analytics

* Flux Vision System: https://www.orange-business.com/fr/produits/flux-vision

• Human mobility analysis through cell phone data (call detail record – CDR);

• Some motivations →
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Geographic area
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Mobility indicators

Location

...

By hour;

By day;

By cumulative days...
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Anonymity-Based Mobility Reports
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* De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D. Unique in the crowd: The privacy bounds

of human mobility. In: Scientific reports (2013).

• Human mobility is quite unique* → Mobile network operators (MNOs) must respect

users' privacy;

• Users cannot sanitize their data → CDRs are automatically generated on MNOs’

servers;

Users

MNOs’ antennas

CDRs Processing System

Data processor (analyzer) Data consumerData holder (MNOs)

Subscription data, CDRs, …

Anonymity

“on-the-fly”
... Anonymity

Threshold

Deterministic 

extrapolation



Anonymity-Based Mobility Reports

* Pyrgelis, A.,Troncoso, C., De Cristofaro, E. What Does The Crowd Say About You? Evaluating

Aggregation-based Location Privacy. In: PoPETS (2017).
** Tu, Z., Xu, F., Li, Y., Zhang, P. and Jin, D., 2018. A new privacy breach: User trajectory recovery from

aggregated mobility data. In: IEEE/ACM Transactions on Networking (2018).
*** Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends

in Theoretical Computer Science (2014).
**** Google COVID-19 Community Mobility Reports: https://www.google.com/covid19/mobility/

Anonymity-based solution:

• Not robust to supplementary knowledge of attackers;

• One cannot account for the privacy leak of individuals;

• Releasing raw aggregates may still be subject to privacy attacks*, **;

Differential privacy***-based solution:

• Release histograms with differential privacy guarantees;

• Ex. of industry application: Google Mobility Reports****…
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Differential Privacy (DP)*: DP → Local DP

A randomized algorithm 𝒜 satisfies ϵ-DP, if for any two neighbouring databases 𝑫
and 𝑫′ and for any output 𝑂 of 𝒜:

Pr 𝒜 𝐷 = 𝑂 ≤ 𝑒𝜖 ∙ Pr[𝒜 𝐷′ = 𝑂]

A randomized algorithm 𝒜 satisfies ϵ-local-differential-privacy (ϵ-LDP), if for any two

inputs 𝒙 and 𝒙′ and for any output 𝑦 of 𝒜:

Pr 𝒜 𝑥 = 𝑦 ≤ 𝑒𝜖 ∙ Pr[𝒜 𝑥′ = 𝑦]

Run by a 

trusted server

Run by 

each user

Intuitively: Any output 

should be about as likely 

regardless of my secret.

Intuitively: Any output 

should be about as likely 

regardless of whether I am 

in the database or not.

* Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in

Theoretical Computer Science (2014).
7/47

Privacy loss

Privacy loss



Properties of DP *: Post-Processing

• Robust to post-processing → if 𝒜 is ϵ-DP, then 𝑓(𝒜) is also ϵ-DP for any f.

* Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in

Theoretical Computer Science (2014).

ML algorithmDatabase OutputUsers

⋮

DP
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• Robust to post-processing → if 𝒜 is ϵ-DP, then 𝑓(𝒜) is also ϵ-DP for any f.

* Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in

Theoretical Computer Science (2014).

ML algorithmDatabase OutputUsers

⋮

DP
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Properties of DP *: Composition

• Composition → DP allows to accounting for the overall privacy loss when

several DP algorithms are applied to the same database (DB).

* Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in

Theoretical Computer Science (2014).

𝜖1

Average Age

DB

𝜖2

Frequency by Salary

𝜖𝑚

Frequency by Gender

⋯



𝑖=1

𝑚

𝜖𝑖

𝜖1

Age

𝜖2

Salary

𝜖𝑚

Gender

⋯
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LDP: Ex. of Randomized Response (RR)*

• Motivated by surveying people on sensitive/embarrassing topics.

• Main idea → Providing deniability to users’ answer (yes/no → binary).

• Ask: “Did you test positive for HIV (human immunodeficiency virus)?”

• Each person:

• Throw a secret unbiased coin:

• If tail, throw the coin again (ignoring the outcome) and answer the
question honestly.

• If head, then throw the coin again and answer “Yes” if head, “No” if
tail.

* Warner, S.L. Randomized response: A survey technique for eliminating evasive answer bias. In: Journal of

the American Statistical Association (1965).

RR: Seeing answer, still not certain about the secret.
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• 𝑓(𝑣𝑌)→ frequency of true Yes (or No – 𝑣𝑁)

• ≈ መ𝑓 𝑣𝑖 =
𝑁𝑖−𝑛𝑞

(𝑝−𝑞)
, ∀𝑖∈{𝑌,𝑁}

• Satisfies 𝜖-LDP w/:

Frequency Estimation and 𝜖 Study of RR

prob. p of ‘being honest’

prob. q of ‘lying’

𝑝 = Pr 𝑅𝑅 𝑌𝑒𝑠 = 𝑌𝑒𝑠 = Pr 𝑅𝑅 𝑁𝑜 = 𝑁𝑜 = 0.75

𝑞 = Pr 𝑅𝑅 𝑁𝑜 = 𝑌𝑒𝑠 = Pr 𝑅𝑅 𝑌𝑒𝑠 = 𝑁𝑜 = 0.25

Estimated 

frequency

Pr(𝑦|𝑥)

Pr(𝑦|𝑥′)
≤ 𝑒𝜖 𝑒𝜖 =

0.75

0.25
, 𝜖 = ln 3

x

x' y

Input set Output set
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LDP Implem. of Big Tech Companies

Frequency (histogram) estimation
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LDP Protocols for Frequency Estimation

• Generalized RR (GRR)*: Extends RR to the case of 𝑘𝑗 ≥ 2.

∀𝑦∈ 𝐴𝑗 Pr 𝒜𝐺𝑅𝑅 𝜖 𝑣 = 𝑦 =
𝑝 =

𝑒𝜖

𝑒𝜖+𝑘𝑗−1
, 𝑖𝑓 𝑦 = 𝑣

𝑞 =
1

𝑒𝜖+𝑘𝑗−1
, 𝑖𝑓 𝑦 ≠ 𝑣

𝜖 = ln
𝑝

𝑞

• Unary Encoding (UE)**: Encode as a bit-vector 𝐵 and perturb each bit

independently into a new bit-vector B’. More specifically:

Pr 𝐵′𝑖 = 1 = ቊ
𝑝, 𝑖𝑓 𝐵𝑖 = 1
𝑞, 𝑖𝑓 𝐵𝑖 = 0

𝜖 = ln
𝑝(1−𝑞)

𝑞(1−𝑝)

Symmetric UE (SUE): 𝑝 =
𝑒𝜖/2

𝑒𝜖/2+1
, 𝑞 =

1

𝑒𝜖/2+1
, Optimized UE (OUE)***: 𝑝 =

1

2
, 𝑞 =

1

𝑒𝜖+1

* Kairouz, P., Oh, S., Viswanath, P. Extremal mechanisms for local differential privacy. In: NeurIPS (2014).
** Erlingsson, Ú., Pihur, V. and Korolova, A. RAPPOR: Randomized Aggregatable Privacy-Preserving

Ordinal Response. In: SIGSAC (2014).
*** Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation.

In: USENIX Security Symposium (2017).
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LDP Protocols for Frequency Estimation

• Unbiased* normalized frequency estimation 𝑓(𝑣𝑖) for 𝑣𝑖 ∈ 𝐴𝑗 :

መ𝑓 𝑣𝑖 =
𝑁𝑖−𝑛𝑞

𝑛(𝑝−𝑞)

𝑁𝑖 = number of times the value 𝑣𝑖 or bit i has been reported.

• Variance of the estimator*:

Var መ𝑓 𝑣𝑖 =
𝑞(1 − 𝑞)

𝑛(𝑝 − 𝑞)2
+
𝑓(𝑣𝑖)(1 − 𝑝 − 𝑞)

𝑛(𝑝 − 𝑞)

* Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation. In:

USENIX Security Symposium (2017).

𝑓 𝑣𝑖 = 0 → Approximate 𝑉𝑎𝑟∗

𝑝 + 𝑞 = 1 “symmetric”

14/47



Outline

1. Introduction

2. Multiple Frequency Estimates Under Local Differential Privacy

3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models

4. Further Contributions

5. Conclusion & Perspectives



Outline

1. Introduction

2. Multiple Frequency Estimates Under Local Differential Privacy

i. Longitudinal and Multidimensional Data Collection

ii. Multidimensional Data Collection

3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models

4. Further Contributions

5. Conclusion & Perspectives



Problem Statement: Statistical Learning

• Tackled Issue: Collecting multidimensional data under 𝜖-LDP throughout time

(i.e., longitudinal study) for frequency estimation.

• More formally (notation):

• d attributes 𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑑 ;

• Each attribute 𝐴𝑗 has a discrete domain of size |𝐴𝑗| = 𝑘𝑗;

• Each user 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 has a tuple 𝐯𝑖 = 𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑑
𝑖 ;

• Analyzer: estimate a 𝑘𝑗-bins histogram for each attribute 𝑗 ∈ [1, 𝑑].

𝐴1 𝐴2 𝐴𝑑

...

𝑡1

⋮

𝑡𝜏

Multiple attributes

Multiple collection
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State-of-the-Art for Multiple Attributes*, **

v1

Splitting

(Spl)

v2...

vd-1

Client Side

Sampling

(Smp)

Local 

randomizer

(ϵ/d)

v1

v2...

vd-1

vd

Local 

randomizer

(ϵ)
[ j, yj ]

vj

j →Uni(d)

y1 

y2 

yd-1 

vd
yd 

v

v

Aggregator

Aggregator...

* Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J. Collecting and analyzing data from smart

device users with local differential privacy. In: arXiv:1606.05053 (2016).
** Wang, N., Xiao, X., Yang, Y., Zhao, J., Hui, S.C., Shin, H., Shin, J., Yu, G. Collecting and analyzing

multidimensional data with local differential privacy. In: ICDE (2019). 16/47



Multidimensional Frequency Estimates

• Variance is minimized for sampling (Smp, i.e., 𝑟 = 1), as in*, **.

𝑉𝑎𝑟 መ𝑓𝐺𝑅𝑅 =
𝑑 𝑒𝜖/𝑟 + 𝑘𝑗 − 2

𝑛𝑟 𝑒𝜖/𝑟 − 1 2
𝑉𝑎𝑟 መ𝑓𝑆𝑈𝐸 =

𝑑 𝑒𝜖/2𝑟

𝑛𝑟 𝑒𝜖/2𝑟 − 1 2 𝑉𝑎𝑟 መ𝑓𝑂𝑈𝐸 =
𝑑 4𝑒𝜖/𝑟

𝑛𝑟 𝑒𝜖/𝑟 − 1 2

• ϵ : privacy budget;

• d : total number of attributes;

• n : total number of users.

Sampling-based solution*: Find r that minimizes the variance of each protocol**.

* Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J. Collecting and analyzing data from smart

device users with local differential privacy. In: arXiv:1606.05053 (2016).

** Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation.

In: USENIX Security Symposium (2017).

number of attributes each user will sample
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Longitudinal Frequency Estimates

Memoization-based solution*, **:

* Erlingsson, Ú., Pihur, V., Korolova, A. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal

Response. In: ACM SIGSAC (2014).
** Ding, B., Kulkarni, J., Yekhanin, S. Collecting telemetry data privately. In: NeurIPS (2017).

⋯

v = Coronavirus

Encode

Aggregator

Day1 Day2 Day3 Dayτ

Instantaneous Sanitization

Permanent 

Sanitization

𝐵′
𝐵1
′′ 𝐵2

′′ 𝐵3
′′ 𝐵𝜏

′′

Memoized →

𝐵′

User

GRR, UE protocols

GRR, UE protocols

𝑝1, 𝑞1

𝑝2, 𝑞2
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Memoization-based: Estimator and Variance

• Unbiased normalized longitudinal frequency estimation 𝑓𝐿(𝑣𝑖) for 𝑣𝑖 ∈ 𝐴𝑗 :

መ𝑓𝐿 𝑣𝑖 =

𝑁𝑖 − 𝑛𝑞2
(𝑝2 − 𝑞2)

− 𝑛𝑞1

𝑛 𝑝1 − 𝑞1
→
𝑁𝑖 − 𝑛𝑞1 𝑝2 − 𝑞2 − 𝑛𝑞2
𝑛 𝑝1 − 𝑞1 𝑝2 − 𝑞2

𝑁𝑖 = number of times the value 𝑣𝑖 or bit i has been reported.

• Approximate variance of the estimator:

Var∗ መ𝑓𝐿 𝑣𝑖 =
𝑝2𝑞1 − 𝑞2 𝑞1 − 1 −𝑝2𝑞1 + 𝑞2 𝑞1 − 1 + 1

𝑛(𝑝1 − 𝑞1)
2(𝑝2 − 𝑞2)

2

Unbiased estimation and variance development  in the manuscript
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Longitudinal GRR: ϵ study

𝑝1 =
𝑒𝜖∞

𝑒𝜖∞ + 𝑘𝑗 − 1
, 𝑞1 =

1 − 𝑝1
𝑘𝑗 − 1

𝑝2 =
𝑒𝜖1 +𝜖∞ − 1

−𝑘𝑗𝑒
𝜖1 + 𝑘𝑗 − 1 𝑒𝜖∞ + 𝑒𝜖1 + 𝑒𝜖∞+𝜖1 − 1

, 𝑞2 =
1 − 𝑝2
𝑘𝑗 − 1

First report:

Infinity reports:

Given 𝜖∞ and 𝜖1:
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Given SUE and OUE:

• Apply OUE twice (L-OUE);

• Apply SUE twice (L-SUE);

• OUE then SUE (L-OSUE);

• SUE then OUE (L-SOUE).

Infinity reports:

First report:

Longitudinal UE: ϵ study
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Num. Eval. of L-GRR and L-UE Variances

More private

M
o
re

 a
cc

u
ra

te

Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates

(ALLOMFREE): min 𝑉𝑎𝑟∗ መ𝑓𝐿(𝐿−𝐺𝑅𝑅) , 𝑉𝑎𝑟∗ መ𝑓𝐿(𝐿−𝑂𝑆𝑈𝐸)
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• Dataset:

• Census-Income*: n = 299285, d = 33, 𝐤 = [9,52,47,17, … , 3,3,2]

• Evaluation: 𝜖∞ = 0.5, 1, … , 3.5, 4 with 𝜖1 = {0.3𝜖∞, 0.6𝜖∞}.

• Methods:

• Smp: L-SUE, L-OUE, L-OSUE, L-SOUE;

• ALLOMFREE (i.e., L-GRR or L-OSUE).

• Metric: Averaged MSE with 𝜏 = 1 (a single collection),

MSE𝑎𝑣𝑔 =
1

𝜏
σ𝑡∈[1,𝜏]

1

𝑑
σ𝑗∈[1,𝑑]

1

|𝐴𝑗|
σ𝑣𝑖∈𝐴𝑗

𝑓 𝑣𝑖 − መ𝑓(𝑣𝑖)
2
.

Experiments

* Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository:

http://archive.ics.uci.edu/ml/index.php
23/47
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Experimental Results on Census Dataset

More private

M
o
re

 a
cc

u
ra

te
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Problem Statement: Statistical Learning

• Tackled Issue: Collecting multidimensional data under 𝜖-LDP for frequency

estimation.

• More formally (notation):

• d attributes 𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑑 ;

• Each attribute 𝐴𝑗 has a discrete domain of size |𝐴𝑗| = 𝑘𝑗;

• Each user 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 has a tuple 𝐯𝑖 = 𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑑
𝑖 ;

• Analyzer: estimate a 𝑘𝑗-bins histogram for each attribute 𝑗 ∈ [1, 𝑑].

𝐴1 𝐴2 𝐴𝑑

...

Multiple attributes
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State-of-the-Art for Multiple Attributes*, **

v1

Splitting

(Spl)

v2...

vd-1

Client Side

Sampling

(Smp)

Local 

randomizer

(ϵ/d)

v1

v2...

vd-1

vd

Local 

randomizer

(ϵ)
[ j, yj ]

vj

j →Uni(d)

y1 

y2 

yd-1 

vd
yd 

v

v

Aggregator

Aggregator...

* Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J. Collecting and analyzing data from smart

device users with local differential privacy. In: arXiv:1606.05053 (2016).
** Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation. In:

USENIX Security Symposium (2017).

ID: y=(y1,y2,…,yd)

ID: < j, yj >
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Why not Smp?

...

(un)trusted

curator
Database

[Age, v] [Gender, v] [HIV, v]

...

33%33%33%

Example:

• Smp[ADP] → (attribute, 𝜖-LDP value)

• Application scenario: health data

• 𝜖 = 2, 𝑑 = 3 attributes: age (𝑘1 = [1,… , 100]),
gender (𝑘2 = [M, F]), and HIV (𝑘3 = [P, N]).

GRR for attributes with small domain

OUE otherwise
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Why not Smp?

...

(un)trusted

curator
Database

[Age, v] [Gender, v] [HIV, P]

I will not share 

this attribute!

...

All attributes have equal 

‘weight’ in terms of privacy.

33%33%33%

Example:

• Smp[ADP] → (attribute, 𝜖-LDP value)

• Application scenario: health data

• 𝜖 = 2, 𝑑 = 3 attributes: age (𝑘1 = [1,… , 100]),
gender (𝑘2 = [M, F]), and HIV (𝑘3 = [P, N]).

GRR for attributes with small domain

OUE otherwise

𝑝𝑔𝑟𝑟 =
𝑒𝜖

𝑒𝜖+𝑘𝑗−1
≈ 0.88 (probability of ‘being honest’)

𝑞𝑔𝑟𝑟 =
1−𝑝𝑔𝑟𝑟

𝑘𝑗−1
≈ 0.12 (probability of ‘lying’)

27/47



RS+FD: Random Sampling + Fake Data

RS+FD

y1 

y2 

yd-1 

yd 

v1

v2

...

vd-1

vd

Local 

randomizer

(ϵ)

Fake Data

Generator

vj

j →Uni(d)

for i ≠ j:
Aggregator

v

Client Side

...
Intuition:

• RS+FD introduces uncertainty in the view of the aggregator.

• Sampling result is not disclosed, what is the impact in terms of privacy*?

Which attribute did 

this user sample???

For each 

non-sampled 

attribute

ID: y=(y1,y2,…,yd)

* Li, N., Qardaji, W., Su, D. On sampling, anonymization, and differential privacy or, k-anonymization meets

differential privacy. In: ASIACCS’12 (2012).

𝜖′ ≥ 𝜖
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RS+FD with GRR

መ𝑓 𝑣𝑖 =
𝑁𝑖𝑑𝑘𝑗 − 𝑛 𝑑 − 1 + 𝑞𝑘𝑗

𝑛𝑘𝑗(𝑝 − 𝑞)

Aggregator → For each attribute 𝑗 ∈ [1, 𝑑], estimate:Client-Side of RS+FD[GRR]:

Unbiased estimation and variance development  in the manuscript
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RS+FD with OUE

መ𝑓 𝑣𝑖 =
𝑑(𝑁𝑖 − 𝑛𝑞)

𝑛 (𝑝 − 𝑞)

Aggregator → For each attribute 𝑗 ∈ [1, 𝑑], estimate:Client-Side of RS+FD[OUE-z]:

OUE applied to zero-vectors → 0, 0, … , 0, 0

Unbiased estimation and variance development  in the manuscript
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RS+FD with OUE

መ𝑓 𝑣𝑖 =
𝑁𝑖𝑑𝑘𝑗 − 𝑛 𝑞𝑘𝑗 + 𝑝 − 𝑞 (𝑑 − 1) + 𝑞𝑘𝑗(𝑑 − 1)

𝑛𝑘𝑗(𝑝 − 𝑞)

Aggregator → For each attribute 𝑗 ∈ [1, 𝑑], estimate:

OUE applied to random unary-encoded vectors

Unbiased estimation and variance development  in the manuscript

Client-Side of RS+FD[OUE-r]:
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• Dataset:

• Census-Income*: n = 299285, d = 33, 𝐤 = [9,52,47,17, … , 3,3,2]

• Evaluation: ϵ = [ln(2), ln(3), ..., ln(7)].

• Methods:

• Spl: ADP (i.e., either GRR or OUE);

• Smp: ADP;

• RS+FD: GRR, OUE-z, OUE-r, and ADP (i.e., either GRR or OUE-z).

• Metric: Averaged MSE,

MSE𝑎𝑣𝑔 =
1

𝑑
σ𝑗∈[1,𝑑]

1

|𝐴𝑗|
σ𝑣𝑖∈𝐴𝑗

𝑓 𝑣𝑖 − መ𝑓(𝑣𝑖)
2
.

Experiments

* Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository:

http://archive.ics.uci.edu/ml/index.php
32/47
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Experimental Results on Census Dataset

More private
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Problem Statement: Machine Learning

• Tackled Issue: Evaluation of the privacy-utility trade-off of training machine

learning algorithms over differentially private data.

• Motivation: ML models are also succeptible to privacy attacks*, **.

ML algorithmDatabase Output

DP

* Shokri, R., Stronati, M., Song, C., Shmatikov, V. Membership inference attacks against machine learning

models. In: IEEE S&P (2017).
** Song, C., Ristenpart, T., Shmatikov, V. Machine learning models that remember too much. In: ACM

SIGSAC (2017). 34/47
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Aggregated Firemen Operation: Open Data*

* Open platform for French public data: https://www.data.gouv.fr/en/

Generic Time

Generic Location

Generic Reason/Type

?
?

Target: Multivariate Operational Demand Forecast

35/47
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Our Solution: Generalization + DP

GRR, SUE, OUE, ...

The data analyst

can aggregate by

any period s/he

wishes (e.g., 1-day,

3-days, 1-week, 1-

month, ...

36/47
Dataset: Intervention’s history of SDIS 25
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Impact on Predictions of Daily Demand

• Target: Number of operations per day and per region.

• Metrics: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE);

• ML technique: eXtreme Gradient Boosting (XGBoost).

• Methods: Baseline (average per day of the week), XGBoost trained over original

and sanitized data.
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Firemen Operation: Open Data*

* Seattle Fire Department: http://www2.seattle.gov/fire/realtime911/

Precise Time

Precise Location

Generic Reason/Type

With both locations: Fire brigade and intervention

Target: Predict ambulance response time (ART)

Time measured

from the call until

an ambulance

arrives at the

emergency scene.
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Need a Precise Location to Predict ART?

Real 

Location

Obfuscated 

Location
⋮⋮

Obfuscation of emergency

location data (i.e., latitude &

longitude) using Planar Laplace

Mechanism*;

Additional perturbation:

• Estimated travel time;

• Estimated travel distance;

• Euclidean distance;

• Neighborhood, city, zone;

• …

* Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C. Geo-indistinguishability: Differential

privacy for location-based systems. In: SIGSAC (2013).
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Impact on Predictions of ART

Metrics:

• Root Mean Squared Error (RMSE)

• Mean Absolute Error (MAE)

• Mean Absolute Percentage Error (MAPE)

• Coefficient of determination (𝑅2)

ML Techniques:

• eXtreme Gradient Boosting (XGBoost)

• Light Gradient Boosted Machine (LGBM)

• Multilayer Perceptron (MLP)

• Least Absolute Shrinkage and Selection

Operator (LASSO)

40/47
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Providing Synthetic Data for Mobility

Multiple Attributes:

Gender, Age-ranges, 

Sleeping Area, ...

Solves for Nb days:

2𝑁𝑏 − 1 combinations 

of day intersections.
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Open Dataset: Mobility Scenario FIMU*

MS-FIMU→ Longitudinal and Multidimensional Dataset of Categorical Attributes:

• 𝑑 = 7 attributes; 𝑛 = 88,935 unique users; 𝑁𝑏 = 7 days;

• Averaged Mean Relative Error ≈ 8%

* Open Dataset: MS-FIMU: https://github.com/hharcolezi/OpenMSFIMU

42/47

Date ID Date

1 2017-05-31

2 2017-06-01

... ...

7 2017-06-06

https://github.com/hharcolezi/OpenMSFIMU
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Current Anonymity-Based Mobility Reports

Users

MNOs’ antennas

CDRs Processing System

Data processor (analyzer) Data consumerData holder (MNOs)

Subscription data, CDRs, …

Anonymity

“on-the-fly”
... Anonymity

Threshold

Deterministic 

extrapolation
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Proposed LDP-Based Mobility Reports

Users

MNOs’ antennas

CDRs Processing System

Data processor (analyzer) Data consumerData holder (MNOs)

Subscription data, CDRs, …

Sanitization

“on-the-fly”

Report randomized

versions of users’ data

(e.g., with GRR, SUE, OUE)

• Advantage: This scenario considers a strong adversary and strong restrictions for
MNOs.

• Issue: The use of local randomizers can lead to great loss of utility.
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LDP-Based Mobility Reports

Dataset:

• MS-FIMU

Method:

• Smp[GRR];

Privacy bugdet:

• 𝜖 = 1
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Conclusion & Perspectives

General Conclusion:

• We published an open dataset MS-FIMU of categorical attributes based on real-

world mobility analytics (longitudinal and multidimensional);

• We proposed a CDRs processing system with DP guarantees at the user level for

human mobility analytics;

• We optimized the utility of LDP protocols (i.e., L-GRR and L-OSUE) for

longitudinal frequency estimates through memoization with theoretical proofs;

• We improved utility and privacy in multiple frequency estimates under LDP

through generic frameworks (i.e., ALLOMFREE and RS+FD);

• We empirically evaluated the privacy-utility trade-off of differentially private

machine learning models on real-world datasets/tasks.
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Conclusion & Perspectives

Publications:

• *Arcolezi, H. H., *Cerna, S., Couchot, J.-F, Guyeux, C., & Makhoul, A. Privacy-Preserving Prediction of Victim’s
Mortality and Their Need for Transportation to Health Facilities. IEEE Transactions on Industrial Informatics, Early
Access (2021).

• Arcolezi, H. H., Cerna, S., Guyeux, C., & Couchot, J.-F. Preserving Geo-Indistinguishability of the Emergency Scene to
Predict Ambulance Response Time. Mathematical and Computational Applications, 26(3), 56 (2021).

• Arcolezi, H. H., Couchot, J.-F., Cerna, S., Guyeux, C., Royer, G., Al Bouna, B., & Xiao, X. Forecasting the Number of
Firefighters Interventions per Region with Local-Differential-Privacy-Based Data. Computers & Security, 96, 101888
(2020).

• Arcolezi, H. H., Couchot, J.-F., Al Bouna, B., & Xiao, X. Random Sampling Plus Fake Data: Multidimensional Frequency
Estimates With Local Differential Privacy. In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM’21), November, Virtual Event, QLD, Australia (2021).

• Arcolezi, H. H., Couchot, J.-F., Al Bouna, B., & Xiao, X. Longitudinal Collection and Analysis of Mobile Phone Data
with Local Differential Privacy. 15th IFIP International Summer School on Privacy and Identity Management, September,
40-57. Springer, Cham (2020).

• Arcolezi, H. H., Couchot, J.-F., Baala, O., Contet, J.-M., Al Bouna, B., & Xiao, X. Mobility modeling through mobile
data: generating an optimized and open dataset respecting privacy. In Proceedings of the 16th International Wireless
Communications and Mobile Computing (IWCMC’20), June, 1689–1694 (2020).

• Open Dataset: Mobility Scenario FIMU. https://github.com/hharcolezi/OpenMSFIMU

• Ph.D. project on privacy-preserving data analytics. https://github.com/hharcolezi/ldp-protocols-mobility-cdrs

The superscript * highlights equal contribution for co-first authors in blue.
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Conclusion & Perspectives

Perspectives:

• Improve RS+FD with realistic fake data;

• Design more enhanced post-processing methods (e.g., Expectation-Maximization

algorithm) for ALLOMFREE and RS+FD;

• Cast other LDP protocols into RS+FD, including longitudinal ones;

• Evaluate performance VS privacy protection of ALLOMFREE and RS+FD on

generating synthetic data for ML classification/regression tasks;

• Attack RS+FD, i.e., try to correctly guess the sampled attribute of each user;

• Evaluate the privacy-utility trade-off of differentially private ML models against

attacks (e.g., membership inference attacks).

• Build a python library for multiple frequency estimates under LDP.
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Thank you for your attention!

Héber HWANG ARCOLEZI
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