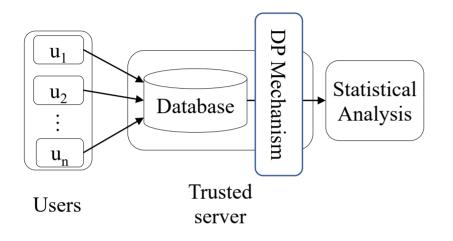


On the Utility Gain of Iterative Bayesian Update for Locally Differentially Private Mechanisms

Héber H. Arcolezi, Selene Cerna, and Catuscia Palamidessi


Inria and École Polytechnique (IPP), Palaiseau, France {heber.hwang-arcolezi,selene-leya.cerna-nahuis,catuscia.palamidessi}@inria.fr

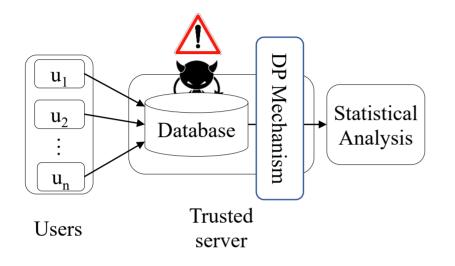
DBSec, July 20th, 2023

Context

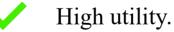
Ínría KECLE POLYTECHNIQUE

Differential Privacy (DP) [Dwork et al, 2006]

Centralized DP:

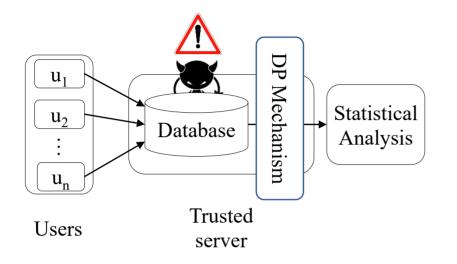

High utility.

X


Need to trust the server.

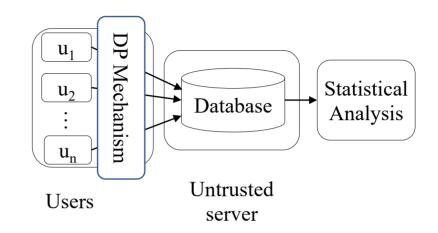
Differential Privacy (DP) [Dwork et al, 2006]

Centralized DP:



Need to trust the server. X

X X Data breaches, data misuse, etc.


ÉCOLE POLYTECHNIQUE

Differential Privacy (DP) [Dwork et al, 2006; Duchi et al, 2013]

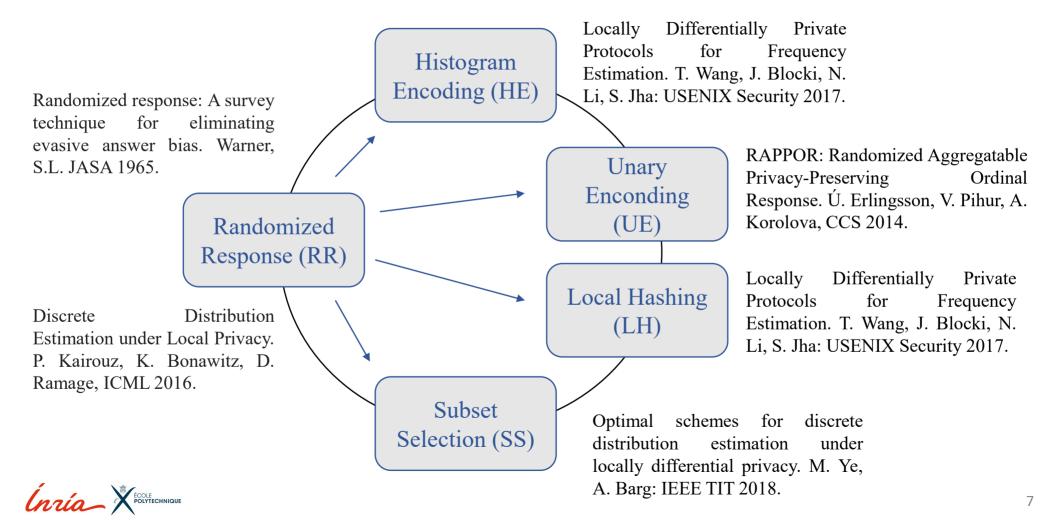
Centralized DP:

- High utility.
 - Need to trust the server.
- XX Data breaches, data misuse, etc.

Local DP (LDP):

No need to trust the server.

Low utility.


Х

Key Differences Between Central and Local DP

- Central DP concerns any two neighboring datasets;
 - Let *f* be the mean query on database $D: \tilde{\mu} = f(D) + \text{Lap}(s/\epsilon)$.
- Local DP concerns any two values;
 - Let the user's value x lies in range [-1, 1]: $y = x + \text{Lap}(2/\epsilon)$;
 - The server aggregates LDP data to estimate mean: $\tilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i$.
- As a result, the amount of noise is different (each sample);
- Two lines of research to improve the privacy-utility trade-off:
 - 1. Design new LDP mechanisms;
 - 2. Improve the estimation at the server side.

State-of-the-Art LDP Distribution Estimation Mechanisms

Post-Processing Distribution Estimator for LDP Mechanisms

Paper	Estimator	Post-Processing	LDP Mechanisms Evaluated
Discrete Distribution Estimation under Local Privacy (ICML 2016)	Matrix Inversion (MI)	 Re-normalization Projection onto the probability simplex 	Generalized RR (GRR)Symmetric UE (SUE)
Locally Differentially Private Frequency Estimation with Consistency (NDSS 2020)	MI	• 10 techniques (e.g., enforcing only non- negativity, re- normalization,)	• Optimal LH (OLH)
Generalized iterative bayesian update and applications to mechanisms for privacy protection (Euro S&P 2020)	Iterative Bayesian	• Generic IBU for	
Reconstruction of the distribution of sensitive data under free-will privacy (arXiv 2022)	Update (IBU)	personalized LDP	• SUE
Our (DBSec 2023)	MI vs IBU	• MI re-normalization	 7 one-time (<i>e.g.</i>, GRR, SUE,) 7 longitudinal (<i>e.g.</i>, RAPPOR)

Ínría ÉCOLE POLYTECHNIQUE

Outline

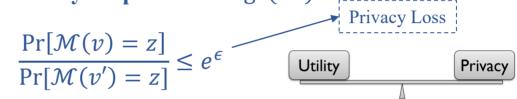
1. Context

2. Background & Problem Statement

- 3. Experimental Results
- 4. Conclusion & Perspectives

Ínría X^{ÉCOLE} POLYTECHNIQUE

LDP: Formal Definition & Properties [Duchi et al, 2013]


Def (ϵ -*LDP*). A randomized mechanism \mathcal{M} satisfies ϵ -LDP, where $\epsilon \ge 0$, if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

LDP: Formal Definition & Properties [Duchi et al, 2013]

Def (ϵ -*LDP*). A randomized mechanism \mathcal{M} satisfies ϵ -LDP, where $\epsilon \ge 0$, if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

Def (Pure \epsilon-LDP) [Wang et al, 2017]. An ϵ -LDP mechanism \mathcal{M} is pure if there are two probability parameters $0 < q^* < p^* < 1$ such that for all $v \neq v' \in \text{Domain}(\mathcal{M})$:

 $\Pr[\mathcal{M}(v) \in \{z | v \in S(z)\}] = p^*,$ $\Pr[\mathcal{M}(v') \in \{z | v \in S(z)\}] = q^*,$

where S(z) is the set of items that z 'supports'.

LDP Distribution Estimation: MI and IBU

f: Original distribution $\tilde{\mathbf{f}}$: Observed distribution

Matrix Inversion (MI)

$$\hat{\mathbf{f}} = \frac{\tilde{\mathbf{f}} - nq^*}{n(p^* - q^*)} = \tilde{\mathbf{f}} A_{vz}^{-1}$$

Iterative Bayesian Update (IBU) $\hat{\mathbf{f}}^{t+1} = \tilde{\mathbf{f}} \cdot \frac{\hat{\mathbf{f}}^t * A_{vz}}{\hat{\mathbf{f}}^t \cdot A_{vz}}$

Channel matrix (probability of obtaining z given v):

$$A_{\nu z} = \begin{bmatrix} p^* & \cdots & q^* \\ \vdots & \ddots & \vdots \\ q^* & \cdots & p^* \end{bmatrix}$$

Outline

1. Context

2. Background & Problem Statement

i. One-Time Distribution Estimation;

- ii. Longitudinal Distribution Estimation.
- 3. Experimental Results
- 4. Conclusion & Perspectives

Problem Statement #1: One-Time Distribution Estimation

Algorithm 1 General pure LDP procedure for distribution estimation.

```
Input: Original data of users, privacy parameter \epsilon, mechanism \mathcal{M}_{(\epsilon)}.
Output: Estimated discrete distribution.
```

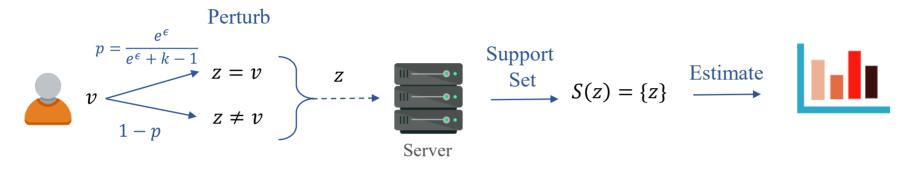
 $\# \; \texttt{User-side}$

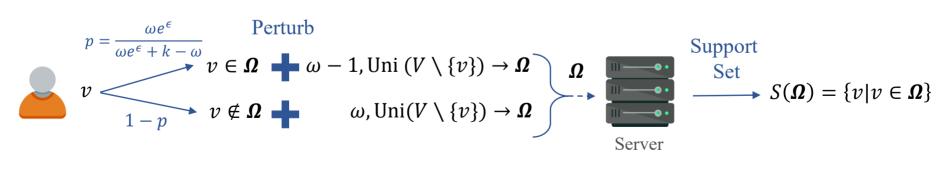
- 1: for each user $i \in [1..n]$ with input data $v^i \in V$ do
- 2: $Encode(v^i)$ into a specific format (if needed);
- 3: **Obfuscate** (v^i) as $z^i = \mathcal{M}_{(\epsilon)}(v^i)$;
- 4: Transmit z^i to the aggregator.

5: end for

Server-side

- 6: Obtain the support set S(z) and probabilities p^* and q^* for $\mathcal{M}_{(\epsilon)}$.
- 7: Estimate Aggregate the obfuscated data z^i $(i \in [1..n])$ to estimate $\{\hat{f}(v)\}_{v \in \mathcal{D}}$.
- 8: return : Estimated discrete distribution $\hat{\mathbf{f}}$ (*i.e.*, a k-bins histogram).


f: Original distribution $\hat{\mathbf{f}}$: Estimated distribution



One-Time LDP Distribution Estimation Mechanisms

Generalized Randomized Response (GRR)

Subset Selection (SS)

One-Time LDP Distribution Estimation Mechanisms

Symmetric Unary Encoding (SUE)

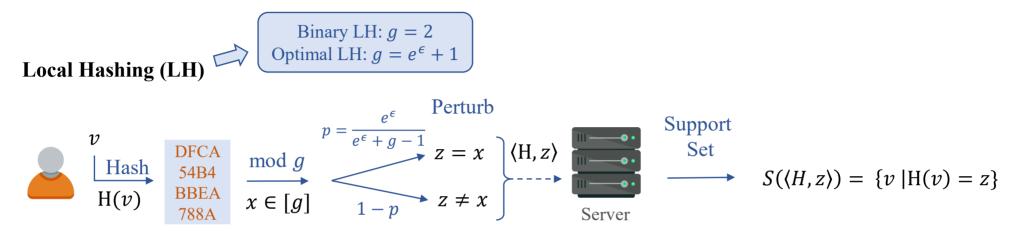
$$v = [0,0,0,1,0] \xrightarrow{\text{Perturb}} z = [1,0,1,0,1]$$

$$v = [0,0,0,1,0] \xrightarrow{\text{Perturb}} z = [1,0,1,0,1]$$

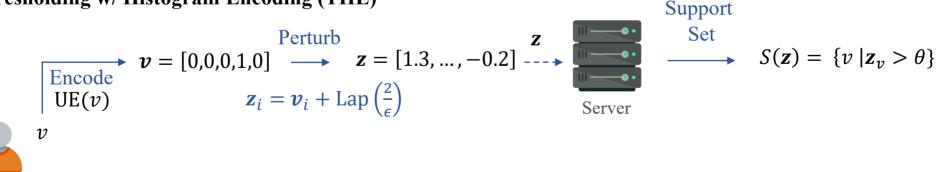
$$v = [1,0,1,0,1] \xrightarrow{\text{Support}} S(z) = \{i | z_i = 1\}$$

$$v = [1,0,1,0,1] \xrightarrow{\text{Support}} S(z) = \{i | z_i = 1\}$$

$$\sum_{i=e^{\epsilon/2}+1} if v_i = 0.$$


Optimized Unary Encoding (OUE)

$$v = [0,0,0,1,0] \xrightarrow{\text{Perturb}} z = [1,0,0,1,1]$$


$$v \qquad Pr[z_i = 1] = \begin{cases} \frac{1}{2} & \text{if } v_i = 1, \\ \frac{1}{e^{\epsilon} + 1} & \text{if } v_i = 0. \end{cases}$$
Support Support Support Server Solution Set Server Solution Set Server Solution Server Server Solution Server Solution

One-Time LDP Distribution Estimation Mechanisms

Thresholding w/ Histogram Encoding (THE)

Outline

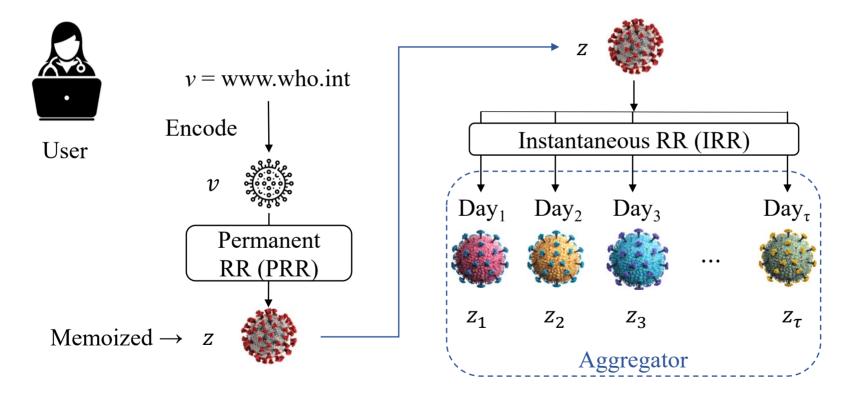
1. Context

2. Background & Problem Statement

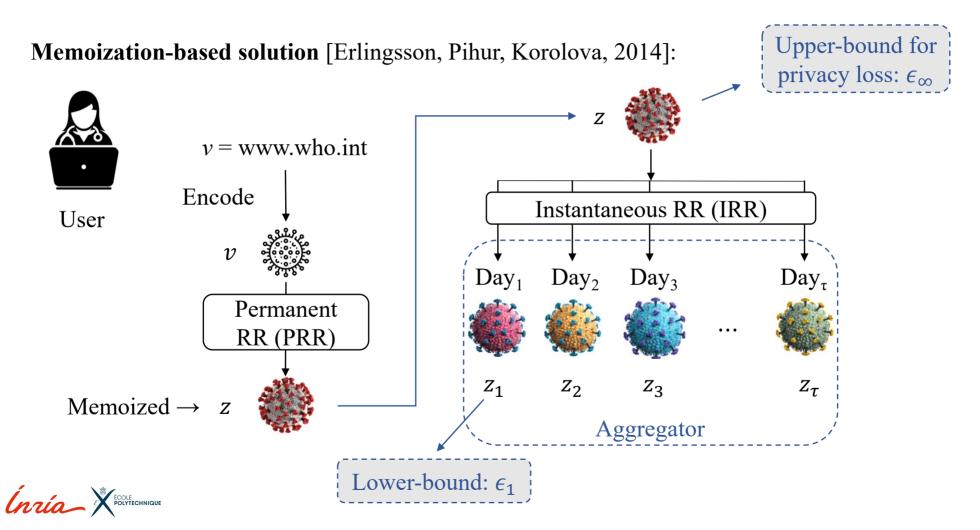
- i. One-Time Distribution Estimation;
- ii. Longitudinal Distribution Estimation.
- 3. Experimental Results
- 4. Conclusion & Perspectives

Problem Statement #2: Longitudinal Distribution Estimation

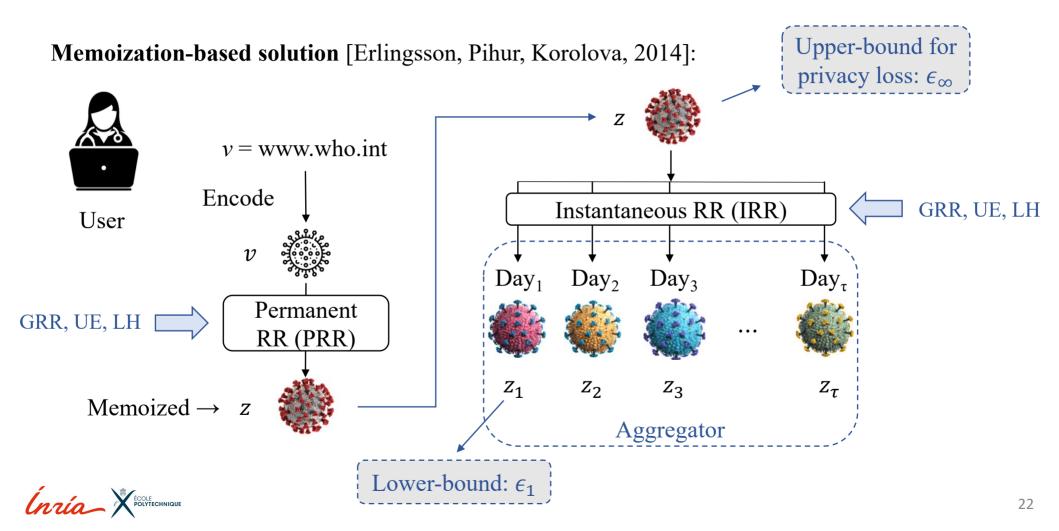
Algorithm 2 Memoization-based procedure for longitudinal distribution estimation under LDP guarantees.


Input: Original data of users, privacy parameters $\epsilon_{\infty}, \epsilon_1$, mechanisms $\mathcal{M}_1, \mathcal{M}_2$. **Output :** Estimated discrete distribution $\hat{\mathbf{f}}$ at each $t \in [\tau]$. # User-side 1: for each user $i \in [1..n]$ with input data $v^i \in V$ do $Encode(v^i)$ into a specific format (if needed); 2: 3: **Obfuscate** (v^i) as $z^i = \mathcal{M}_{1(\epsilon_{\infty})}(v^i);$ \triangleright First obfuscation step: p_1^* and q_1^* Memoize (z^i) for v^i . 4: for each time $t \in [\tau]$ do: 5:**Obfuscate** (z^i) as $z_t^i = \mathcal{M}_{2(\epsilon)}(z^i);$ \triangleright Second obfuscation step: p_2^* and q_2^* 6: 7: Transmit z_t^i to the aggregator. 8: end for 9: end for # Server-side 10: Obtain the support set S(z) and probabilities p_1^*, q_1^*, p_2^* , and q_2^* for $\mathcal{M}_{1(\epsilon)}, \mathcal{M}_{2(\epsilon)}$. 11: for each time $t \in [\tau]$ do: **Estimate** Aggregate the obfuscated data z_t^i $(i \in [1..n])$ to estimate $\{\hat{f}(v)\}_{v \in \mathcal{D}}$. 12:13: end for

f: Original distribution $\hat{\mathbf{f}}$: Estimated distribution


Longitudinal LDP Distribution Estimation Mechanisms

Memoization-based solution [Erlingsson, Pihur, Korolova, 2014]:



Inría X^{ÉCOLE} POLYTECHNIQUE

Longitudinal LDP Distribution Estimation Mechanisms

Longitudinal LDP Distribution Estimation Mechanisms

Outline

- 1. Context
- 2. Background & Problem Statement
- 3. Experimental Results
- 4. Conclusion & Perspectives

Ínría X^{ÉCOLE} POLYTECHNIQUE

Setting of Experiments

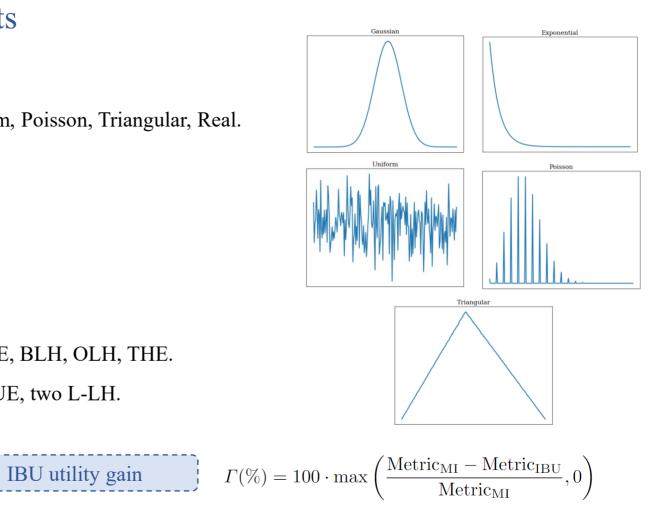
Six data distributions:

• Gaussian, Exponential, Uniform, Poisson, Triangular, Real.

Four domain size:

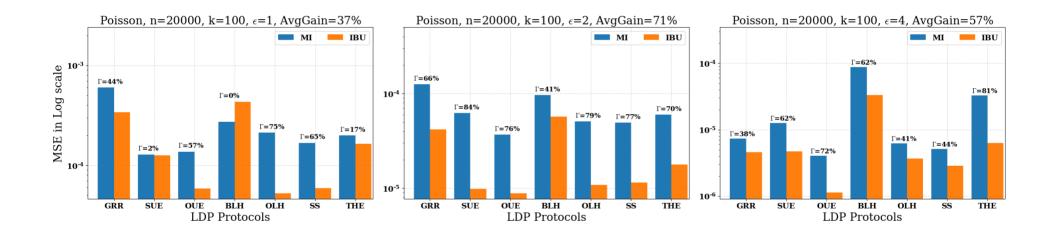
• $k \in \{2, 50, 100, 200\}.$

Two number of users:


• $n \in \{20000, 100000\}.$

Fourteen LDP mechanisms:

- One-time: GRR, SS, SUE, OUE, BLH, OLH, THE.
- Longitudinal: L-GRR, four L-UE, two L-LH.


Two utility metrics:

• MSE and MAE.

Instance of IBU Utility Gain: One-Time LDP Mechanisms

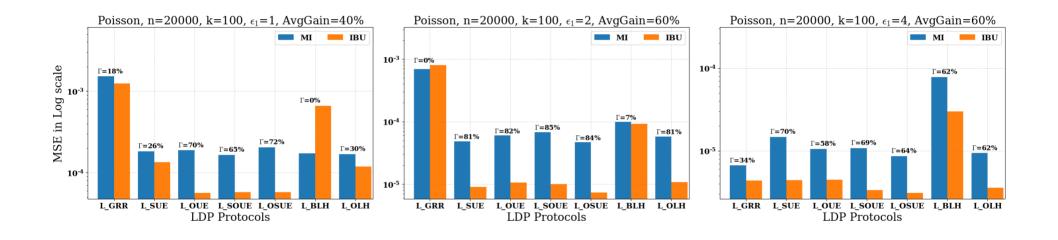
Summary of IBU Utility Gain: One-Time LDP Mechanisms

Averaged IBU gain in % considering all experimented k, n, ϵ .

								\frown							
GRR	R SUE		OUE SS			THE		BLH		OLH		Avg.			
MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
1	1	13	7	10	6	3	1	13	7	16	9	11	7	9	5
16	11	26	15	27	16	19	11	26	15	16	10	27	16	22	13
0	0	29	21	20	14	14	10	31	22	57	43	18	12	24	17
39	28	41	26	44	28	41	27	41	27	14	6	46	30	38	24
0	0	21	13	15	9	10	6	23	14	36	21	15	9	17	10
31	21	40	23	42	25	34	19	42	25	21	11	44	27	36	21
14	10	28	17	26	16	20	12	29	18	26	16	26	16	24	15
	MSE 1 16 0 39 0 31	MSE MAE 1 1 16 11 0 0 39 28 0 0 31 21	MSE MAE MSE 1 1 13 16 11 26 0 0 29 39 28 41 0 0 21 31 21 40	MSE MAE MAE 1 1 7 16 11 26 15 0 0 29 21 39 28 41 26 0 0 21 13 31 21 41 23	MAE MSE MAE MSE 1 1 7 10 16 11 26 15 27 0 0 29 21 20 39 28 41 26 44 0 0 21 15 21 31 21 24 24 24	MSEMAEMAEMAE111371061611261527160029212014392841264428002113159312123402342	MSEMAEMSEMAEMAEMAE11137106316112615271619002921201414392841264428410021131591031214023422534	MSEMAEMAEMAEMAEMAE1113710631161126152716191100292120141410392841264428412700211315910631212342253419	MSEMAEMAEMAEMAEMAEMAEMAE1113710631131611261527161911260029212014141031392841264428412741002113159106233121234225341942	MAEMAEMAEMAEMAEMAEMAEMAE111371063113716112615271619112615002921201414103122392841264428412741270021131591062314312123422534192025	MAEMAEMAEMAEMAEMAEMAEMAEMAEMAE111371063113716161126152716191126151600292120141410312257392841264428412741271400211315910623143631212342253419202121	MAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAE111371063113716916112615271619112615161000292120141410312257433928412644284127412714600211315910623143621312140234225341942252111	MAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAE1113710631137169111611261527161911261516270029212014141031225743183928412644284127412714646002113159106231436211531214023422534194225211144	MAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAEMAE11137106311371691171611261527161911261516271600292120141410312257431812392841264428412741271464630002113159106231426142614262136213031214023422534102314261436213637	MAE MAE

Mechanisms w/ highest IBU gain: SUE and THE

Summary of IBU Utility Gain: One-Time LDP Mechanisms


Averaged IBU gain in % considering all experimented k, n, ϵ .

Dist.	GRR		R SUE		OUE		SS		THE		BLH		OLH		Avg.	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Gauss.	1	1	13	7	10	6	3	1	13	7	16	9	11	7	9	5
Exp.	16	11	26	15	27	16	19	11	26	15	16	10	27	16	22	13
Unif.	0	0	29	21	20	14	14	10	31	22	57	43	18	12	24	17
Poiss.	39	28	41	26	44	28	41	27	41	27	14	6	46	30	38	24
Triang.	0	0	21	13	15	9	10	6	23	14	36	21	15	9	17	10
Rea.l	31	21	40	23	42	25	34	19	42	25	21	11	44	27	36	21
Avg.	14	10	28	17	26	16	20	12	29	18	26	16	26	16	24	15

Distributions w/ highest IBU gain: Poisson and real

Instance of IBU Utility Gain for Longitudinal LDP Mechanisms

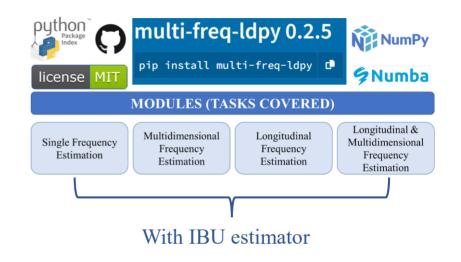
Summary of IBU Utility Gain: Longitudinal LDP Mechanisms

Averaged IBU gain in % considering all experimented k, n, ϵ .

Dist.	L-GR	R	L-SUE		L-OUE		L-SOUE		L-OSUE		L-BLH		L-OLH		Avg.	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Gauss.	14	5	13	8	9	5	10	7	12	7	2	0	7	4	9	5
Exp.	4	1	27	16	26	15	27	16	27	16	4	2	20	12	19	11
Unif.	36	25	31	22	12	8	16	11	18	13	54	43	21	16	26	19
Poiss.	5	2	43	28	48	32	49	32	44	29	11	6	42	30	34	22
Triang.	28	17	24	15	11	7	13	9	16	10	26	14	14	9	18	11
Real.	4	1	43	25	43	27	44	27	43	25	9	4	34	22	31	18
Avg.	15	8	30	19	24	15	26	17	26	16	17	11	23	15	23	14
															-	

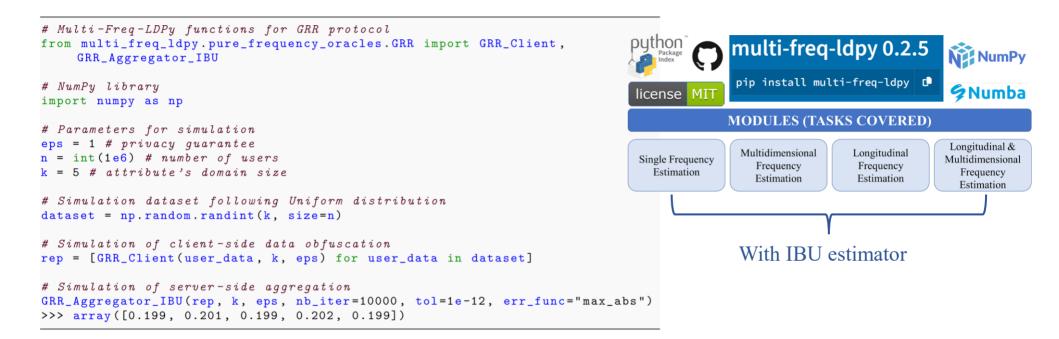
Mechanisms w/ highest IBU gain: L-SUE and L-SOUE

Summary of IBU Utility Gain: Longitudinal LDP Mechanisms

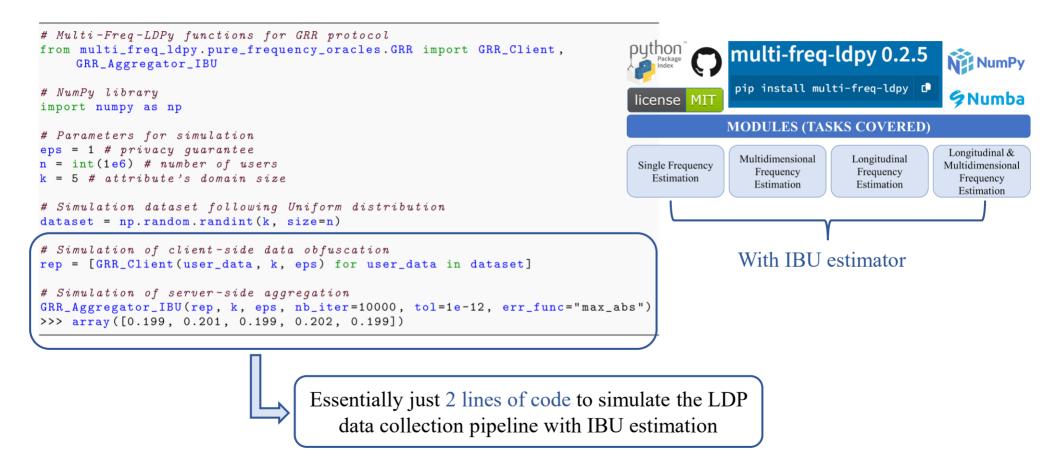

Averaged IBU gain in % considering all experimented k, n, ϵ .

Dist.	L-GRR		L-SUE		L-OUE		L-SOUE		L-OSUE		L-BLH		L-OLH		Avg.	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Gauss.	14	5	13	8	9	5	10	7	12	7	2	0	7	4	9	5
Exp.	4	1	27	16	26	15	27	16	27	16	4	2	20	12	19	11
Unif.	36	25	31	22	12	8	16	11	18	13	54	43	21	16	26	19
Poiss.	5	2	43	28	48	32	49	32	44	29	11	6	42	30	34	22
Triang.	28	17	24	15	11	7	13	9	16	10	26	14	14	9	18	11
Real.	4	1	43	25	43	27	44	27	43	25	9	4	34	22	31	18
Avg.	15	8	30	19	24	15	26	17	26	16	17	11	23	15	23	14

Distributions w/ highest IBU gain: Poisson and real



IBU Implementation into Multi-Freq-LDPy [Arcolezi et al, 2022]



IBU Implementation into Multi-Freq-LDPy [Arcolezi et al, 2022]

IBU Implementation into Multi-Freq-LDPy [Arcolezi et al, 2022]

Outline

1. Context

- 2. Background & Problem Statement
- 3. Experimental Results
- 4. Conclusion & Perspectives

Ínría X^{ÉCOLE} POLYTECHNIQUE

Takeaway Messages

Conclusions:

- We benchmarked IBU against MI in several contexts for 14 LDP mechanisms;
- IBU can significantly improve the utility of LDP distribution estimation;
- We implemented IBU into multi-freq-ldpy.

Inría Deutechnique

Takeaway Messages

Conclusions:

- We benchmarked IBU against MI in several contexts for 14 LDP mechanisms;
- IBU can significantly improve the utility of LDP distribution estimation;
- We implemented IBU into multi-freq-ldpy.

Perspectives:

- Investigate IBU for "non-pure" LDP mechanisms;
- Consider different initialization and stopping criteria for IBU;
- IBU for high-dimensional data (*i.e.*, $k \gg 200$);
- Implement Generalized IBU (GIBU) into multi-freq-ldpy.

On the Utility Gain of Iterative Bayesian Update for Locally Differentially Private Mechanisms

Héber H. Arcolezi, Selene Cerna, and Catuscia Palamidessi

Inria and École Polytechnique (IPP), Palaiseau, France

