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As the privacy increases the accuracy
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Local DP (LDP) and Fairness: Friends or Foes?

Dataset after LDP ML algorithm Output
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Local DP (LDP) and Fairness: Friends! erFees?

Dataset after LDP ML algorithm
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Differential Privacy (DP) and Fairness: Friends or Foes?

Paper

DP Has Disparate Impact on Model
Accuracy (NeurIPS 2019)

Robin Hood and Matthew Effects: DP
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Data (ICML 2022)

An Empirical Analysis of Fairness
Notions under DP (PPAI 2023)

DP has Bounded Impact on Fairness in
Classification (ICML 2023)

Fair Learning with Private
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On the application and impact of e-DP
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time prediction (ICLR 2023)
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generation +
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Classification
Classification

Classification

Classification

Classification

Privacy

Central DP

Central DP

Central DP

Central DP

Local DP

Local DP

Local DP

Details

DP-SGD w/ same hyperparameters
as the non-private baseline.

DP generative models w/ same
hyperparameters as the non-private
baseline.

DP-SGD: search for
hyperparameters.

DP-SGD: Theory.

optimal

LDP on single attribute + fairness
mitigation mechanism.

LDP on multiple attributes.

LDP on multiple attributes.
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2. Background



Fairness Metrics

Fairness [Cambridge Dictionary]: The quality of treating
people equally or in a way that is right or reasonable.

VERNON PRATER BRISHA BORDEN
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Fairness Metrics

Fairness [Cambridge Dictionary]: The quality of treating
people equally or in a way that is right or reasonable.

Ev’/!\».

VERNON PRATER BRISHA BORDEN

Protected attribute: A, € {0,1}
Target, predictor: Y, ¥ € {0,1}

LOW RISK 3 HIGH RISK 8

Fairness Metric = Equation When Satisfied?
Disparate Impact Pr[? = 1[4, = 0] 1

(DI) Pr[V = 1|4, = 1]

Statistical Parity 5 _ a1 oo _

Difference (SPD) Pr{¥ = 1|4, = 1] - Pr[¥ = 1]4, = 0] 0

Equal Opportunity 5 _ _ a1 oo _ _

Difference (EOD) Pr[V = 1Y = 1,4, = 1] = Pr[¥ = 1|y = 1,4, = 0] 0
Overall Accuracy Pr[? = Y|4, = 1: . Pr:? = Y|4, = 0] 0

Difference (OAD)




Differential Privacy (DP) [Dwork et al, 2006]

Data DP Mechanism Output Atncker
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Differential Privacy (DP) [Dwork et al, 2006; Duchi et al, 2013]
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Centralized DP:
High utility.

¥ Need to trust the server.

X X Data breaches, data misuse, etc.
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No need to trust the server.

X Low utility.
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LDP: Formal Definition & Properties [Duchi et al, 2013]

Def (e-LDP). A randomized mechanism M satisfies e-LDP, where € = 0, if for any two
inputs v, v’ € Domain(M) and for any output z € Range(M):

——————————————————

/ Privacy Loss |
PriM (v) = z]

<e€ ili i
PF[M(U’) _ Z] s e IUtIty Prvac?l

i
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LDP: Formal Definition & Properties [Duchi et al, 2013]

Def (e-LDP). A randomized mechanism M satisfies e-LDP, where € = 0, if for any two
inputs v, v’ € Domain(M) and for any output z € Range(M):

——————————————————

| ifrvaeyLoss
PriM (v) = z]

<e€ ili i
PF[M(U’) _ Z] s e IUtIty Prvac?l

i

Fundamental (L)DP properties [Dwork et al, 2006]:
* Post-processing — if M is e-LDP, then the composition f (M) is e-LDP for any f.

* Composition — Let M; be a €;-LDP mechanism and M, a €,-LDP mechanism.
Then, the composed mechanism M = (]\/[1 (v), M, (v)) is (€; + €,)-LDP.
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3.

Problem Statement & Methods
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Problem Statement

D

“Non-sensitive”

Original
dataset

X
Y N\

User’s goal:
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(X, 45, Y)

Test set

(X, 45,Y)

ZS = M(ASr E)

ML algorithm

T

nO'“'O‘: :>
2 SP

XA

C « Train(X,Z,Y)

Prediction

Y =C(X,A,Y)

 Sanitize multiple sensitive attributes (4| = 2) independently with e-LDP.

Server’s goal:

 Train a Machine Learning (ML) classifier on sanitized data (X, Z,Y).
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Research Questions (RQs) & Assumptions

* RQI1: How does LDP pre-processing impacts fairness & utility?

* RQ2: How to better split the privacy budget € for d;, = |Ag| sensitive attributes?

* RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-oft?
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Research Questions (RQs) & Assumptions

* RQI1: How does LDP pre-processing impacts fairness & utility?
* (Fairness) protected attribute 4, is always a sensitive attribute Ap, € Ag;
* Empirical results w/ 3 datasets, 4 fairness metrics, and 4 utility metrics.

* RQ2: How to better split the privacy budget € for d;, = |Ag| sensitive attributes?

* RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-oft?
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Research Questions (RQs) & Assumptions

* RQI1: How does LDP pre-processing impacts fairness & utility?
* (Fairness) protected attribute 4, is always a sensitive attribute Ap, € Ag;
* Empirical results w/ 3 datasets, 4 fairness metrics, and 4 utility metrics.

* RQ2: How to better split the privacy budget € for d;, = |Ag| sensitive attributes?

|

* State-of-the-art: Uniform splitting — €; = = for J € Ag; :
ds [ e-LDP following the
" : .
* Our solution: k-based — €; = Z L for j € A, ki = |4;]. sequential composifion
Y2 ki

i=1"1

* RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-oft?
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Research Questions (RQs) & Assumptions

* RQI1: How does LDP pre-processing impacts fairness & utility?
* (Fairness) protected attribute 4, is always a sensitive attribute Ap, € Ag;
* Empirical results w/ 3 datasets, 4 fairness metrics, and 4 utility metrics.

* RQ2: How to better split the privacy budget € for d;, = |Ag| sensitive attributes?

|

* State-of-the-art: Uniform splitting — €; = = for J € Ag; :
ds [ e-LDP following the
" : .
* Our solution: k-based — €; = Z L for j € A, ki = |4;]. sequential composifion
Y2 ki

i=1 i
* RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-oft?
* Benchmarked 7 state-of-the-art LDP protocols;

* Post-processed e-LDP report for “homogeneous encoding™ at the server side.
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LDP Protocols & Server’s “Homogeneous™ Encoding

Generalized Randomized Response (GRR) One-hot-encoding (OHE)
Perturb Indicator vector encoding (IVE)
eE
P= ec+k—1
Z=V z mams Encod
. } ..... . s "% . _ OHE(2) = [0,0,0,1,0]
. ZF UV —o-
I-p
Server
Subset Selection (SS)
e€ Perturb

we+k w

vEg+w—1,Uni(V\{v})—>ﬂ 2 S e
< > =N . z=IVE(Q) =[1,0,0,1,1]

VE Qs w,Uni(V \ {v}) » 2 — .

Server
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LDP Protocols & Server’s “Homogeneous™ Encoding

RAPPOR
Perturb R
" v =10,0,0,1,0] » z=11,0,1,0,1]
ncode Z
OHE(v) e N >
- PI‘[Z:]_]: e€/2+11vl_ )
! 1 Server
. 6/2— ifvl- = 0.
ef/«+1 W,
Optimized Unary Encoding (OUE)
'\
Perturb
v = [0,0,0,1,0] T 2=11,0,0,1,1]
Encode 4
OHE(v) L — e
Pr[z; = 1] = 1
o€ + 1 1fvl- =0.
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LDP Protocols & Server’s “Homogeneous™ Encoding

Binary LH: g = 2
Optimal LH: g = e€ + 1

Local Hashing (LH) = [

o€ Perturb
v P=Cey g—1 —e-
DFCA d zZ =X (H,Z) M Fncode S((H,Z)) = {U |H(U) = Z}
al e — - ' IVE(S((H,z))) = [1,0,0,0,1]
H BBEA Z = ;Z = yVHYu,yY,
(v) — x € [g] 1-p T ZFX

Server

Thresholding w/ Histogram Encoding (THE)

Perturb z £ Encode S(2) = {v|z, > 6}
v =[00010] —» z=[13,..,-02]---» =l ——
Encode —e- z = IVE(S5(2)) = [1,0,1,10]

OHE(v) z; =v; + Lap (%)

Server
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Outline

4.

Experimental Results
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Setting of Experiments

Three datasets:

e Adult, ACSCoverage, LSAC.
Four fairness metrics:

« DI, SPD, EOD, AOD.

ML Classifier:

* LGBM w/ fixed hyperparameters;
* Train/test split as 80/20.

Seven LDP protocols:

* GRR, SS, RAPPOR, OUE, BLH, OLH, THE.
Two privacy budget splitting solutions:

e Uniform and k-based.

[Fixed 4] = 4]

Dataset

As, domain size k

Y

Adult

ACSCoverage

LSAC

45849

98739

20427

gender

DIS

race

- gender, k = 2

-race, k=5

- native country, k = 41
- age, k=174

-DIS, k=2

- AGEP, k =50
-SEX, k=2

- SCHL, k=24

- race, k = 2

- gender, k =2

- family income, k =5
- full time, &k = 2

income

PUBCOV

pass bar

— { Stability: average over 20 runs ]
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Impact of LDP on Fairness

=== NonDP = GRR —4— BLH —&— OLH —&— RAPPOR —/— OUE —#— SS —=— THE

1 uniform
_ Pr[lf =114, =0]
Pr[¥ = 1|4, = 1]
~ 7]
SPD = Pr[¥ = 1|4, = 1] %
—Pr[? = 1|4, = 0] - 0 E
&
" =
EOD=Pr[f =1y =1,4,=1] S
—Pr[Y =1y =1,4,=0] - 0 =
OAD = Pr[Y =Y|4, = 1] -
Pr[f =Y|4, =0] >0

More privacy More privacy

V4
7 % ECOLE
h% V5 POLYTECHNIQUE 26



Impact of LDP on Fairness

Pr[¥ = 1|4, = 0]
= -
Pr[¥ = 1|4, = 1]

SPD = Pr[¥ = 1|4, = 1]
—Pr[V = 1|4, = 0] > 0

EOD =Pr[f = 1|y = 1,4, = 1]
—Pr[Y =1y =1,4,=0] - 0

OAD = Pr[Y =Y|4, = 1] -
Pr[f =Y|4, =0] >0

4
Ry
V4 ECOLE

Uniform: goes towards the
‘bad’ baseline fairness metrics

-,

=== NonDP == GRR —%— BLH —&— OLH —&— RAPPOR —/— OUE —#— SS —=— THE

Cd .
¢ uniform Y
N

More fairness

More privacy More privacy
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Impact of LDP on Utility

=== NonDP == GRR —6— BLH —&— OLH —&— RAPPOR —%— OUE —#— SS —=— THE

1 uniform k-based
A 0.815 ”"7:””'7777["””"7‘””'7777}777777777(””’7771””””’5””"” g _j‘ 1

Accuracy ®

0.805 1

0.825 |
fl-score = 0.820 -

0.8151 &
0.815

ROCAUC

0.810 4

auc

More utility

0.805 - i

Recall

recall

0.831 & 5 7

More privacy More privacy

V4
Ve g ECOLE
&ZW 2K POLYTECHNIQUE 28



Impact Of LDP on Utlhty [ k-based: approaches faster the ]

‘good’ baseline utility metrics

=== NonDP == GRR —4— BLH —&— OLH —&— RAPPOR —%— OUE —#— SS —=— THE

-
1  uniform
A 085 FTmmmTemmm e
A cosol
ccuracy 5 ! i~ |
0.805 | i e—— — )

0.825 |
fl-score = 0.820 -

0.8151 &
0.815

ROCAUC

0.810 4

auc

More utility

0.805 - i

Recall

=
()
£
0.831 ¢

More privacy More privacy

v
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Impact of LDP on Fairness & Utility: Generic? — Yes!

Appendix Experiments: |Ag| = Uniform([2, 6]).

--- NonDP —=- GRR —— BLH —— OLH —&— RAPPOR —%— OUE —#— 8§ —=— THE

uniform

--- NonDP —=— GRR —4— BLH —&— OLH —©— RAPPOR —%— OUE —— SS —=— THE

uniform k-based
0.95 11 — | s S = 0.945 L Eo S L
=097 g 0.9401
0.935 1

0.85

More privacy
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Outline

5. Conclusion & Perspectives
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Takeaway Messages

Conclusions:

DP does not necessarely lead to worsened fairness in ML;
(L)DP pre-processing positively affects fairness w/ minor utility impact;
Our k-based solution leads to better privacy-utility-fairness trade-off;

Mechanism w/ best privacy-utility-fairness trade-off: GRR and SS.
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Takeaway Messages

Conclusions:

* DP does not necessarely lead to worsened fairness in ML;

* (L)DP pre-processing positively affects fairness w/ minor utility impact;
* Our k-based solution leads to better privacy-utility-fairness trade-off;

* Mechanism w/ best privacy-utility-fairness trade-off: GRR and SS.
Perspectives:

* Formalize our findings (i.e., LDP & fairness trade-off);

* Introduce optimal mechanisms for privacy-fairness-aware ML;

* Study the impact of LDP pre-processing on different ML algorithms.
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