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Differential Privacy (DP) and Fairness: Friends or Foes? 
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Paper Task Privacy Details Results

DP Has Disparate Impact on Model 

Accuracy (NeurIPS 2019)

Classification Central DP DP-SGD w/ same hyperparameters

as the non-private baseline.

Foes

Robin Hood and Matthew Effects: DP 

Has Disparate Impact on Synthetic 

Data (ICML 2022)

Synthetic data 

generation + 

classification

Central DP DP generative models w/ same

hyperparameters as the non-private

baseline.

Foes

An Empirical Analysis of Fairness 

Notions under DP (PPAI 2023)

Classification Central DP DP-SGD: search for optimal

hyperparameters.

Minor 

impact

DP has Bounded Impact on Fairness in 

Classification (ICML 2023)

Classification Central DP DP-SGD: Theory. Bounded 

impact

Fair Learning with Private 

Demographic Data (ICML 2020)

Classification Local DP LDP on single attribute + fairness

mitigation mechanism.

On the application and impact of 𝜖-DP 

and fairness in ambulance engagement 

time prediction (ICLR 2023)

Classification Local DP LDP on multiple attributes. Friends

Our (DBSec 2023) Classification Local DP LDP on multiple attributes. Friends
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Fairness Metrics
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Fairness [Cambridge Dictionary]: The quality of treating 

people equally or in a way that is right or reasonable.
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Fairness [Cambridge Dictionary]: The quality of treating 

people equally or in a way that is right or reasonable.

Fairness Metric Equation When Satisfied?

Disparate Impact 

(DI)

Pr ෠𝑌 = 1|𝐴𝑝 = 0

Pr ෠𝑌 = 1|𝐴𝑝 = 1
1

Statistical Parity 

Difference (SPD)
Pr ෠𝑌 = 1|𝐴𝑝 = 1 − Pr ෠𝑌 = 1|𝐴𝑝 = 0 0

Equal Opportunity 

Difference (EOD)
Pr ෠𝑌 = 1|𝑌 = 1, 𝐴𝑝 = 1 − Pr ෠𝑌 = 1|𝑌 = 1, 𝐴𝑝 = 0 0

Overall Accuracy 

Difference (OAD)
Pr ෠𝑌 = 𝑌|𝐴𝑝 = 1 − Pr ෠𝑌 = 𝑌|𝐴𝑝 = 0 0

Protected attribute: 𝐴𝑝 ∈ 0,1

Target, predictor: 𝑌, ෠𝑌 ∈ 0,1



Differential Privacy (DP) [Dwork et al, 2006]
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Differential Privacy (DP) [Dwork et al, 2006; Duchi et al, 2013]
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…

High utility.

Need to trust the server.

Local DP (LDP):

No need to trust the server.

Low utility.

Data breaches, data misuse, etc.

UsersUsers



LDP: Formal Definition & Properties [Duchi et al, 2013]
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Def (ϵ-LDP). A randomized mechanism ℳ satisfies 𝜖-LDP, where 𝜖 ≥ 0, if for any two

inputs 𝑣, 𝑣′ ∈ Domain(ℳ) and for any output 𝑧 ∈ Range(ℳ):

Pr ℳ 𝑣 = 𝑧

Pr[ℳ 𝑣′ = 𝑧]
≤ 𝑒𝜖

Privacy Loss
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Def (ϵ-LDP). A randomized mechanism ℳ satisfies 𝜖-LDP, where 𝜖 ≥ 0, if for any two

inputs 𝑣, 𝑣′ ∈ Domain(ℳ) and for any output 𝑧 ∈ Range(ℳ):

Pr ℳ 𝑣 = 𝑧

Pr[ℳ 𝑣′ = 𝑧]
≤ 𝑒𝜖

Fundamental (L)DP properties [Dwork et al, 2006]:

• Post-processing → if ℳ is ϵ-LDP, then the composition 𝑓(ℳ) is ϵ-LDP for any f.

• Composition → Let ℳ1 be a 𝜖1-LDP mechanism and ℳ2 a 𝜖2-LDP mechanism. 

Then, the composed mechanism ℳ = ℳ1 𝑣 ,ℳ2 𝑣  is 𝜖1 + 𝜖2 -LDP.

Privacy Loss
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User’s goal:

• Sanitize multiple sensitive attributes ( 𝐴𝑠 ≥ 2) independently with 𝜖-LDP.

Server’s goal:

• Train a Machine Learning (ML) classifier on sanitized data 𝑋, 𝑍𝑠, 𝑌 .

Problem Statement
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𝐷 = 𝑋, 𝐴𝑠, 𝑌

Original 

dataset

“Non-sensitive” Sensitive

Test set

𝑋, 𝐴𝑠, 𝑌

Train set

𝑋, 𝐴𝑠, 𝑌

ML algorithm

෠𝑌 = 𝐶 𝑋, 𝐴𝑠, 𝑌
𝑍𝑠 = ℳ 𝐴𝑠, 𝜖

PredictionLDP

𝐶 ← Train 𝑋, 𝑍𝑠, 𝑌



• RQ1: How does LDP pre-processing impacts fairness & utility?

• (Fairness) protected attribute 𝐴𝑝 is always a sensitive attribute 𝐴𝑝 ∈ 𝐴𝑠;

• Empirical results w/ 3 datasets, 4 fairness metrics, and 4 utility metrics.

• RQ2: How to better split the privacy budget 𝜖 for 𝑑𝑠 = |𝐴𝑠| sensitive attributes? 

• State-of-the-art: Uniform splitting → 𝜖𝑗 =
𝜖

𝑑𝑠
 for 𝑗 ∈ 𝐴𝑠;

• Our solution: 𝑘-based → 𝜖𝑗 =
𝜖∙𝑘𝑗

σ
𝑖=1
𝑑𝑠 𝑘𝑖

 for 𝑗 ∈ 𝐴𝑠, 𝑘𝑗 = |𝐴𝑗|.

• RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-off?

• Benchmarked 7 state-of-the-art LDP protocols;

• Post-processed 𝜖-LDP report for “homogeneous encoding” at the server side.

Research Questions (RQs) & Assumptions
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𝜖-LDP following the 

sequential composition
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𝜖-LDP following the 

sequential composition



LDP Protocols & Server’s “Homogeneous” Encoding
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𝑧 ≠ 𝑣

𝑧 = 𝑣 𝑧
𝒛 = OHE 𝑧 = 0,0,0,1,0

𝑝 =
𝑒𝜖

𝑒𝜖 + 𝑘 − 1

1 − 𝑝

Encode

Perturb

Generalized Randomized Response (GRR)

Server

𝑣 ∈ 𝜴

𝑣 ∉ 𝜴

𝜴

𝑝 =
𝜔𝑒𝜖

𝜔𝑒𝜖 + 𝑘 − 𝜔

1 − 𝑝

𝑣
Encode

𝜔 − 1, Uni (𝑉 ∖ {𝑣}) → 𝜴

𝜔,Uni(𝑉 ∖ {𝑣}) → 𝜴
𝒛 = IVE 𝜴 = 1,0,0,1,1

Perturb

Subset Selection (SS)

Server

One-hot-encoding (OHE)

Indicator vector encoding (IVE)

𝑣



LDP Protocols & Server’s “Homogeneous” Encoding

22

RAPPOR

Optimized Unary Encoding (OUE)

𝒗 = 0,0,0,1,0 𝒛 = 1,0,1,0,1

Pr 𝒛𝑖 = 1 =

𝑒𝜖/2

𝑒𝜖/2 + 1
if 𝒗𝑖 = 1,

1

𝑒𝜖/2 + 1
if 𝒗𝑖 = 0.

𝒛

Perturb

𝑣

Encode
OHE(𝑣)

Server

𝒗 = 0,0,0,1,0 𝒛 = 1,0,0,1,1

Pr 𝒛𝑖 = 1 =

1

2
if 𝒗𝑖 = 1,

1

𝑒𝜖 + 1
if 𝒗𝑖 = 0.

𝒛

Perturb

𝑣

Encode
OHE(𝑣)

Server



LDP Protocols & Server’s “Homogeneous” Encoding
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Local Hashing (LH)

Thresholding w/ Histogram Encoding (THE)

𝒗 = 0,0,0,1,0
Perturb

𝒛 = 1.3,… , −0.2

𝒛𝑖 = 𝒗𝑖 + Lap
2

𝜖

𝒛 Encode 𝑆 𝒛 = 𝑣 𝒛𝑣 > 𝜃}

𝒛 = IVE 𝑆(𝒛) = 1,0,1,10

𝑣

Encode
OHE(𝑣) Server

𝑧 = 𝑥

𝑧 ≠ 𝑥

H, 𝑧
𝑣

H(𝑣)

Hash
DFCA 

54B4 

BBEA 

788A

mod 𝑔

𝑥 ∈ [𝑔]

𝑝 =
𝑒𝜖

𝑒𝜖 + 𝑔 − 1

1 − 𝑝

Encode

Perturb

Server

𝒛 = IVE 𝑆 𝐻, 𝑧 = 1,0,0,0,1

𝑆 𝐻, 𝑧 = 𝑣 𝐻 𝑣 = 𝑧}

Binary LH: 𝑔 = 2
Optimal LH: 𝑔 = 𝑒𝜖 + 1
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Three datasets:

• Adult, ACSCoverage, LSAC.

Four fairness metrics:

• DI, SPD, EOD, AOD.

ML Classifier:

• LGBM w/ fixed hyperparameters;

• Train/test split as 80/20.

Seven LDP protocols:

• GRR, SS, RAPPOR, OUE, BLH, OLH, THE.

Two privacy budget splitting solutions:

• Uniform and 𝑘-based.

Setting of Experiments

25

Stability: average over 20 runs

Fixed 𝐴𝑠 = 4



Impact of LDP on Fairness
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More privacyMore privacy
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DI =
Pr ෠𝑌 = 1|𝐴𝑝 = 0

Pr ෠𝑌 = 1|𝐴𝑝 = 1
→ 1

SPD = Pr ෠𝑌 = 1|𝐴𝑝 = 1

−Pr ෠𝑌 = 1|𝐴𝑝 = 0 → 0

EOD = Pr ෠𝑌 = 1|𝑌 = 1, 𝐴𝑝 = 1

−Pr ෠𝑌 = 1|𝑌 = 1, 𝐴𝑝 = 0 → 0

OAD = Pr ෠𝑌 = 𝑌|𝐴𝑝 = 1 −

Pr ෠𝑌 = 𝑌|𝐴𝑝 = 0 → 0

1

0
0



Impact of LDP on Fairness
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DI =
Pr ෠𝑌 = 1|𝐴𝑝 = 0

Pr ෠𝑌 = 1|𝐴𝑝 = 1
→ 1

SPD = Pr ෠𝑌 = 1|𝐴𝑝 = 1

−Pr ෠𝑌 = 1|𝐴𝑝 = 0 → 0

EOD = Pr ෠𝑌 = 1|𝑌 = 1, 𝐴𝑝 = 1

−Pr ෠𝑌 = 1|𝑌 = 1, 𝐴𝑝 = 0 → 0

OAD = Pr ෠𝑌 = 𝑌|𝐴𝑝 = 1 −

Pr ෠𝑌 = 𝑌|𝐴𝑝 = 0 → 0

1

0
0

Uniform: goes towards the 

‘bad’ baseline fairness metrics



Impact of LDP on Utility
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Impact of LDP on Utility
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More privacyMore privacy
0

M
o
re
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ty

1

Accuracy

f1-score

ROC AUC

Recall

𝑘-based: approaches faster the 

‘good’ baseline utility metrics



Impact of LDP on Fairness & Utility: Generic? → Yes!
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Appendix Experiments: 𝐴𝑠 = Uniform([2, 6]).

More privacy More privacy
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Takeaway Messages
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Conclusions:

• DP does not necessarely lead to worsened fairness in ML;

• (L)DP pre-processing positively affects fairness w/ minor utility impact;

• Our 𝑘-based solution leads to better privacy-utility-fairness trade-off;

• Mechanism w/ best privacy-utility-fairness trade-off: GRR and SS.
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Conclusions:

• DP does not necessarely lead to worsened fairness in ML;

• (L)DP pre-processing positively affects fairness w/ minor utility impact;

• Our 𝑘-based solution leads to better privacy-utility-fairness trade-off;

• Mechanism w/ best privacy-utility-fairness trade-off: GRR and SS.

Perspectives:

• Formalize our findings (i.e., LDP & fairness trade-off);

• Introduce optimal mechanisms for privacy-fairness-aware ML;

• Study the impact of LDP pre-processing on different ML algorithms.
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