

(Local) Differential Privacy has NO Disparate Impact on Fairness

Héber H. Arcolezi, Karima Makhlouf, and Catuscia Palamidessi

Inria and École Polytechnique (IPP), Palaiseau, France {heber.hwang-arcolezi,karima.makhlouf,catuscia}@lix.polytechnique.fr

DBSec, July 19th, 2023

Motivation

Ínría KECLE POLYTECHNIQUE

Differential Privacy (DP) and Fairness: Friends or Foes?

Fairness Through Awareness

Cynthia Dwork Microsoft Research S.V. Mountain View, CA, USA dwork@microsoft.com Moritz Hardt^{*} IBM Research Almaden San Jose, CA, USA mhardt@us.ibm.com Toronto, ON, CANADA toni@cs.toronto.edu

Omer Reingold Microsoft Research S. V. Mountain View, CA, USA omer.reingold@microsoft.com Experience Dept. of Computer Science Toronto, ON, CANADA zemel@cs.toronto.edu

An Empirical Analysis of Fairness Notions under Differential Privacy*

Anderson Santana de Oliveira,¹ Caelin Kaplan, ² Khawla Mallat ¹ Tanmay Chakraborty ³

¹ SAP ² SAP and INRIA ³ SAP and Eurecom firstname.lastname@sap.com

On the application and impact of ϵ -DP and fairness in ambulance engagement time prediction

Selene Cerna & Catuscia Palamidessi Inria and École Polytechnique (IPP), Palaiseau, France {selene-leya.cerna-nahuis,catuscia.palamidessi}@inria.fr

Differential Privacy Has Disparate Impact on Model Accuracy

Eugene Bagdasaryan
Cornell TechOmid Poursaeed*
Cornell Techeugene@cs.cornell.eduop63@cornell.edu

Vitaly Shmatikov Cornell Tech shmat@cs.cornell.edu

Differential Privacy (DP) and Fairness: Friends or Foes?

Toniann Pitassi

University of Toronto

Fairness Through Awareness

Cynthia Dwork Moritz Hardt Microsoft Research S.V. IBM Research Almaden Mountain View, CA, USA San Jose, CA, USA Dept. of Computer Science dwork@microsoft.com Toronto, ON, CANADA mhardt@us.ibm.com toni@cs.toronto.edu **Omer Reingold Richard Zemel** Microsoft Research S. V. University of Toronto

Mountain View, CA, USA Dept. of Computer Science omer.reingold@microsoft.com Toronto, ON, CANADA zemel@cs.toronto.edu

An Empirical Analysis of Fairness Notions under Differential Privacy*

Anderson Santana de Oliveira,¹ Caelin Kaplan, ² Khawla Mallat ¹ Tanmay Chakraborty ³

 1 SAP ² SAP and INRIA ³ SAP and Eurecom firstname.lastname@sap.com

ON THE APPLICATION AND IMPACT OF ϵ -DP and fair-NESS IN AMBULANCE ENGAGEMENT TIME PREDICTION

Selene Cerna & Catuscia Palamidessi Inria and École Polytechnique (IPP), Palaiseau, France {selene-leya.cerna-nahuis,catuscia.palamidessi}@inria.fr

Robin Hood and Matthew Effects: Differential Privacy Has **Disparate Impact on Synthetic Data**

Georgi Ganev¹² Bristena Oprisanu¹ Emiliano De Cristofaro¹

Local DP (LDP) and Fairness: Friends or Foes?

Local DP (LDP) and Fairness: Friends! or Foes?

Differential Privacy (DP) and Fairness: Friends or Foes?

Paper	Task	Privacy	Details	Results
DP Has Disparate Impact on Model Accuracy (NeurIPS 2019)	Classification	Central DP	DP-SGD w/ same hyperparameters as the non-private baseline.	Foes
Robin Hood and Matthew Effects: DP Has Disparate Impact on Synthetic Data (ICML 2022)	Synthetic data generation + classification	Central DP	DP generative models w/ same hyperparameters as the non-private baseline.	Foes
An Empirical Analysis of Fairness Notions under DP (PPAI 2023)	Classification	Central DP	DP-SGD: search for optimal hyperparameters.	Minor impact
DP has Bounded Impact on Fairness in Classification (ICML 2023)	Classification	Central DP	DP-SGD: Theory.	Bounded impact
FairLearningwithPrivateDemographic Data (ICML 2020)	Classification	Local DP	LDP on single attribute + fairness mitigation mechanism.	
On the application and impact of ϵ -DP and fairness in ambulance engagement time prediction (ICLR 2023)	Classification	Local DP	LDP on multiple attributes.	Friends
Our (DBSec 2023)	Classification	Local DP	LDP on multiple attributes.	Friends

Ínría ÉCOLE POLYTECHNIQUE

Outline

1. Motivation

2. Background

- 3. Problem Statement & Methods
- 4. Experimental Results
- 5. Conclusion & Perspectives

Inría ÉCOLE POLYTECHNIQUE

Fairness Metrics

Fairness [Cambridge Dictionary]: The quality of treating people equally or in a way that is right or reasonable.

Fairness Metrics

Fairness [Cambridge Dictionary]: The quality of treating people equally or in a way that is right or reasonable.

Protected attribute: $A_p \in \{0,1\}$ Target, predictor: $Y, \hat{Y} \in \{0,1\}$

Fairness Metric	Equation	When Satisfied?
Disparate Impact (DI)	$\frac{\Pr[\hat{Y} = 1 A_p = 0]}{\Pr[\hat{Y} = 1 A_p = 1]}$	1
Statistical Parity Difference (SPD)	$\Pr[\hat{Y} = 1 A_p = 1] - \Pr[\hat{Y} = 1 A_p = 0]$	0
Equal Opportunity Difference (EOD)	$\Pr[\hat{Y} = 1 Y = 1, A_p = 1] - \Pr[\hat{Y} = 1 Y = 1, A_p = 0]$	0
Overall Accuracy Difference (OAD)	$\Pr[\hat{Y} = Y A_p = 1] - \Pr[\hat{Y} = Y A_p = 0]$	0

Inría

Differential Privacy (DP) [Dwork et al, 2006]

The attacker cannot tell if \mathbf{v} is in the sample

Differential Privacy (DP) [Dwork et al, 2006; Duchi et al, 2013]

Centralized DP:

- High utility.
- X Need to trust the server.
- XX Data breaches, data misuse, etc.

Local DP (LDP):

No need to trust the server.

Low utility.

LDP: Formal Definition & Properties [Duchi et al, 2013]

Def (ϵ -*LDP*). A randomized mechanism \mathcal{M} satisfies ϵ -LDP, where $\epsilon \ge 0$, if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

Inría

LDP: Formal Definition & Properties [Duchi et al, 2013]

Def (ϵ -*LDP*). A randomized mechanism \mathcal{M} satisfies ϵ -LDP, where $\epsilon \ge 0$, if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

Fundamental (L)DP properties [Dwork et al, 2006]:

- **Post-processing** \rightarrow if \mathcal{M} is ϵ -LDP, then the composition $f(\mathcal{M})$ is ϵ -LDP for any f.
- **Composition** \rightarrow Let \mathcal{M}_1 be a ϵ_1 -LDP mechanism and \mathcal{M}_2 a ϵ_2 -LDP mechanism. Then, the composed mechanism $\mathcal{M} = (\mathcal{M}_1(v), \mathcal{M}_2(v))$ is $(\epsilon_1 + \epsilon_2)$ -LDP.

Outline

- 1. Motivation
- 2. Background
- 3. Problem Statement & Methods
- 4. Experimental Results
- 5. Conclusion & Perspectives

Inría ÉCOLE POLYTECHNIQUE

Problem Statement

User's goal:

- Sanitize multiple sensitive attributes ($|A_s| \ge 2$) independently with ϵ -LDP. Server's goal:
- Train a Machine Learning (ML) classifier on sanitized data (X, Z_s, Y) .

• RQ1: How does LDP pre-processing impacts fairness & utility?

• RQ2: How to better split the privacy budget ϵ for $d_s = |A_s|$ sensitive attributes?

• RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-off?

Inría XECOLE POLYTECHNIQUE

- RQ1: How does LDP pre-processing impacts fairness & utility?
 - (Fairness) protected attribute A_p is always a sensitive attribute $A_p \in A_s$;
 - Empirical results w/ 3 datasets, 4 fairness metrics, and 4 utility metrics.
- RQ2: How to better split the privacy budget ϵ for $d_s = |A_s|$ sensitive attributes?

• RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-off?

Inría X^{ÉCOLE} POLYTECHNIQUE

- RQ1: How does LDP pre-processing impacts fairness & utility?
 - (Fairness) protected attribute A_p is always a sensitive attribute $A_p \in A_s$;
 - Empirical results w/3 datasets, 4 fairness metrics, and 4 utility metrics.
- RQ2: How to better split the privacy budget ϵ for $d_s = |A_s|$ sensitive attributes? •

 - State-of-the-art: Uniform splitting → ε_j = ^ε/_{ds} for j ∈ A_s;
 Our solution: k-based → ε_j = ^{ε·k_j}/_{Σ^{ds}_{i=1}k_i} for j ∈ A_s, k_j = |A_j|.

RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-off?

- RQ1: How does LDP pre-processing impacts fairness & utility?
 - (Fairness) protected attribute A_p is always a sensitive attribute $A_p \in A_s$;
 - Empirical results w/3 datasets, 4 fairness metrics, and 4 utility metrics.
- RQ2: How to better split the privacy budget ϵ for $d_s = |A_s|$ sensitive attributes? •

 - State-of-the-art: Uniform splitting → ε_j = ^ϵ/_{ds} for j ∈ A_s;
 Our solution: k-based → ε_j = ^{ϵ·k_j}/_{Σ^{ds}/_{i=1}k_i} for j ∈ A_s, k_j = |A_j|.

- RQ3: Which LDP protocol lead to the best privacy-utility-fairness trade-off?
 - Benchmarked 7 state-of-the-art LDP protocols;
 - Post-processed ϵ -LDP report for "homogeneous encoding" at the server side. ٠

LDP Protocols & Server's "Homogeneous" Encoding

Perturb $p = \frac{e^{\epsilon}}{e^{\epsilon} + k - 1}$ z = v z = v $z \neq v$ $z \neq v$ $z \neq v$ z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0 z = 0

One-hot-encoding (OHE) Indicator vector encoding (IVE)

Subset Selection (SS)

Generalized Randomized Response (GRR)

LDP Protocols & Server's "Homogeneous" Encoding

RAPPOR

Optimized Unary Encoding (OUE)

$$v = [0,0,0,1,0] \xrightarrow{\text{Perturb}} z = [1,0,0,1,1]$$

$$v \qquad Pr[z_i = 1] = \begin{cases} \frac{1}{2} & \text{if } v_i = 1, \\ \frac{1}{e^{\epsilon} + 1} & \text{if } v_i = 0. \end{cases}$$

LDP Protocols & Server's "Homogeneous" Encoding

Thresholding w/ Histogram Encoding (THE)

$$\begin{array}{c} \text{Perturb} \\ \text{Encode} \\ \text{OHE}(v) \end{array} v = \begin{bmatrix} 0,0,0,1,0 \end{bmatrix} \xrightarrow{\rightarrow} z = \begin{bmatrix} 1.3, \dots, -0.2 \end{bmatrix} \xrightarrow{\leftarrow} z \xrightarrow{\leftarrow} z = \text{IVE}(S(z)) = \begin{bmatrix} 1,0,1,10 \end{bmatrix} \\ z = \text{IVE}(S(z)) = \begin{bmatrix} 1,0,1,10 \end{bmatrix} \\ v \end{array}$$

Outline

- 1. Motivation
- 2. Background
- 3. Problem Statement & Methods
- 4. Experimental Results
- 5. Conclusion & Perspectives

Inría ÉCOLE POLYTECHNIQUE

Setting of Experiments

Three datasets:

• Adult, ACSCoverage, LSAC.

Four fairness metrics:

• DI, SPD, EOD, AOD.

ML Classifier:

- LGBM w/ fixed hyperparameters;
- Train/test split as 80/20.

Seven LDP protocols:

- GRR, SS, RAPPOR, OUE, BLH, OLH, THE. Two privacy budget splitting solutions:
- Uniform and *k*-based.

Fixed
$$|A_s| = 4$$

	Dataset	n	A_p	A_s , domain size k	Y
	Adult	45849	gender	- gender, $k = 2$	income
				- race, $k = 5$	
				- native country, $k = 41$	
				- age, $k = 74$	
	ACSCoverage	98739	DIS	- DIS, $k = 2$	PUBCOV
				- AGEP, $k = 50$	
				- SEX, $k = 2$	
٦				- SCHL, $k = 24$	
	LSAC	20427	race	- race, $k = 2$	pass bar
				- gender, $k = 2$	
				- family income, $k = 5$	
				- full time, $k = 2$	

Stability: average over 20 runs

Impact of LDP on Fairness

26

Impact of LDP on Fairness

Impact of LDP on Utility

Ínría XECLE POLYTECHNIQUE

Impact of LDP on Utility

k-based: approaches faster the 'good' baseline utility metrics

Impact of LDP on Fairness & Utility: Generic? \rightarrow Yes!

Appendix Experiments: $|A_s| = \text{Uniform}([2, 6])$.

Outline

- 1. Motivation
- 2. Background
- 3. Problem Statement & Methods
- 4. Experimental Results
- 5. Conclusion & Perspectives

Inría ÉCOLE POLYTECHNIQUE

Takeaway Messages

Conclusions:

- DP does not necessarely lead to worsened fairness in ML;
- (L)DP pre-processing positively affects fairness w/ minor utility impact;
- Our *k*-based solution leads to better privacy-utility-fairness trade-off;
- Mechanism w/ best privacy-utility-fairness trade-off: GRR and SS.

Takeaway Messages

Conclusions:

- DP does not necessarely lead to worsened fairness in ML;
- (L)DP pre-processing positively affects fairness w/ minor utility impact;
- Our *k*-based solution leads to better privacy-utility-fairness trade-off;
- Mechanism w/ best privacy-utility-fairness trade-off: GRR and SS.

Perspectives:

- Formalize our findings (*i.e.*, LDP & fairness trade-off);
- Introduce optimal mechanisms for privacy-fairness-aware ML;
- Study the impact of LDP pre-processing on different ML algorithms.

(Local) Differential Privacy has NO Disparate Impact on Fairness

Héber H. Arcolezi, Karima Makhlouf, and Catuscia Palamidessi Inria and École Polytechnique (IPP), Palaiseau, France

