

On the Risks of Collecting Multidimensional Data Under Local Differential Privacy

Héber H. Arcolezi Inria and École Polytechnique (IPP) heber.hwang-arcolezi@inria.fr

Jean-François Couchot Femto-ST Institute, Univ. Bourg. Franche-Comté, CNRS jean-francois.couchot@univ-fcomte.fr Sébastien Gambs Université du Québec à Montréal, UQAM gambs.sebastien@uqam.ca

Catuscia Palamidessi Inria and École Polytechnique (IPP) catuscia@lix.polytechnique.fr

Introduction

Recute Conta

Local Differential Privacy (LDP): Definition & Properties

Def (ϵ -*LDP*) [1]. A randomized mechanism \mathcal{M} satisfies ϵ -LDP, where $\epsilon \ge 0$, if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

Fundamental (L)DP properties [2]:

- **Post-processing** \rightarrow if \mathcal{M} is ϵ -LDP, then the composition $f(\mathcal{M})$ is ϵ -LDP for any f.
- **Composition** \rightarrow Let \mathcal{M}_1 be a ϵ_1 -LDP mechanism and \mathcal{M}_2 a ϵ_2 -LDP mechanism. Then, the composed mechanism $\mathcal{M} = (\mathcal{M}_1(v), \mathcal{M}_2(v))$ is $(\epsilon_1 + \epsilon_2)$ -LDP.

[1] Duchi et al. *Local privacy and statistical minimax rates*. FOCS 2013.[2] Dwork et al, 2006. *Calibrating noise to sensitivity in private data analysis*. TCC 2006.

Motivation for Attack-Based Approaches

Why? → Challenging, under-explored, and crucial problem. Impact:

- Attacks allow interpreting privacy claims;
- Enable vulnerability discovery;
- Help practitioners to adequately select the privacy mechanism.

Motivation for Attack-Based Approaches

Why? \rightarrow Challenging, under-explored, and crucial problem. **Impact:**

- Attacks allow interpreting privacy claims;
- Enable vulnerability discovery;
- Help practitioners to adequately select the privacy mechanism.

Problem Statement & Assumptions

Motivating example:

- Server collects multidimensional data ($d \ge 2$) under LDP;
- Server surveys the population multiple times (*e.g.*, different attributes);
- Server's utility goal \rightarrow independent histogram estimation (no correlation).

Problem Statement & Assumptions

Motivating example:

- Server collects multidimensional data ($d \ge 2$) under LDP;
- Server surveys the population multiple times (*e.g.*, different attributes);
- Server's utility goal \rightarrow independent histogram estimation (no correlation).

Server assumptions:

POLYTECHNIQUE Chria

- Knows the users' pseudonymized IDs;
- Has **no knowledge** about the real data distributions;
- Has access to background knowledge (e.g., Census data);
- Uses state-of-the-art solutions: SMP [3] or RS+FD [4].

[3] Wang *et al.* Collecting and analyzing multidimensional data with local differential privacy. ICDE 2019.
[4] Arcolezi *et al.* RS+FD: Multidimensional frequency estimates with local differential privacy. CIKM 2021.

State-of-the-Art Solutions for Multidimensional Data

POLYTECHNIQUE Inia

State-of-the-Art Solutions for Multidimensional Data

State-of-the-Art Solutions for Multidimensional Data

Summary of Our Contributions

Distinguishability attack:

• Value distinguishability;

POLYTECHNIQUE Inia

Summary of Our Contributions

Fake data

Distinguishability attack:

Value distinguishability;

Fake data distinguishability.

 $\hat{v} = \mathcal{A}(z)$ $\stackrel{\epsilon\text{-LDP}}{\clubsuit} z = \mathcal{M}(v,\epsilon)$ Z12 User Server RS+FD Uncover the ML Classifier sampled attribute Fake data Fake data of each user., LDP value Fake data Fake data

 $RS+FD \rightarrow SMP$

Summary of Our Contributions

Distinguishability attack:

Value distinguishability;

• Fake data distinguishability.

Re-identification attack:

• Profiling users + background knowledge.

Fake data

Fake data

Fake data

Outline

1. Introduction

- 2. Attack-Based Approaches to LDP
- 3. Conclusion & Perspectives

KECOLE Conta

Outline

1. Introduction

2. Attack-Based Approaches to LDP

I. Value Distinguishability;

- II. Fake Data Distinguishability;
- III. Re-Identification;
- IV. Countermeasure Solution.
- 3. Conclusion & Perspectives

POLYTECHNIQUE Unia

Value Distinguishability Attack

Assumption: Each user has a value $v \in V$, where k = |V|.

LDP mechanism: SMP solution.

Adversary's goal: Predict v given $z = \mathcal{M}(v, \epsilon)$, *i.e.*, $\hat{v} = \mathcal{A}(z)$. Metric: Accuracy (ACC).

Baseline: Uniform random guess $ACC = \frac{1}{k}$.

Generalized Randomized Response (GRR)

- No encoding required;
- Report z = v with prob. $p = \frac{e^{\epsilon}}{e^{\epsilon} + k 1}$;
- Otherwise, report any other value $z = \text{Uni}(V \setminus \{v\})$ with prob. $q = \frac{1-p}{k-1}$ [5, 6].

[5] Warner. *Randomized response: A survey technique for eliminating evasive answer bias.* JASA 1965.[6] Kairouz *et al. Discrete distribution estimation under local privacy.* ICML 2016.

Generalized Randomized Response (GRR)

- No encoding required;
- Report z = v with prob. $p = \frac{e^{\epsilon}}{e^{\epsilon} + k 1}$;
- Otherwise, report any other value $z = \text{Uni}(V \setminus \{v\})$ with prob. $q = \frac{1-p}{k-1}$ [5, 6].

Attacker \mathcal{A} : Since p > q, predict reported value as the true one:

•
$$\hat{v} = \mathcal{A}(z) = z.$$

[5] Warner. *Randomized response: A survey technique for eliminating evasive answer bias.* JASA 1965.[6] Kairouz *et al. Discrete distribution estimation under local privacy.* ICML 2016.

Instance of Value Distinguishability Attack Results

Attacker's ACC w/ domain size k = 64 and $\epsilon \in \{1, 2, ..., 9, 10\}$.

19

Outline

1. Introduction

2. Attack-Based Approaches to LDP

- I. Value Distinguishability;
- II. Fake Data Distinguishability;
- III. Re-Identification;
- IV. Countermeasure Solution.
- 3. Conclusion & Perspectives

KECOLE POLYTECHNIQUE Unia

Fake Data Distinguishability Attack

Assumption: Each user has a tuple $v = [v_1, \dots, v_d]$ of $d \ge 2$ attributes.

LDP mechanism: RS+FD solution.

Adversary's goal: Predict sampled attribute given $\mathbf{z} = [z_1, \dots, z_d]$. Metric: Attribute Inference Accuracy (AIF-ACC).

Baseline: Uniform random guess AIF-ACC = $\frac{1}{d}$.

Attack Model

No Knowledge (NK) model:

- Training a classifier over *s* synthetic profiles;
- Has knowledge about the RS+FD mechanism and ϵ used by users.

Instance of Fake Data Dinstinguishability Results: RS+FD

Setting:

- Average over 20 runs for stability;
- RS+FD solution with **GRR**;
- Number of synthetic profiles $s \in \{1n, 3n, 5n\}$.

Outline

1. Introduction

2. Attack-Based Approaches to LDP

- I. Value Distinguishability;
- II. Fake Data Distinguishability;
- III. Re-Identification;
- IV. Countermeasure Solution.
- 3. Conclusion & Perspectives

POLYTECHNIQUE Unia

Re-Identification Attack

Aassumptions: Collect multidimensional data multiple times (sample different attributes). LDP mechanism: SMP and RS+FD solutions.

Adversary's goal: Profile and re-identify user in top- $k \in \{1, 10\}$ guesses.

Metric: Re-Identification Accuracy (RID-ACC).

Baseline: Uniform random guess RID-ACC = $\frac{\text{top}-k}{n}$.

Attack Model

Adversary has access to side information \mathcal{D}_{BK} :

- \mathcal{R} : compute distance between inferred profile y and all users in \mathcal{D}_{BK} .
- G: takes score vector c and outputs list of top-k guesses.

Instance of Re-Identification Results: SMP

Setting:

- Average over 20 runs for stability;
- **SMP** solution with **GRR**;
- Number of data collections #Surveys $\in \{1, 2, ..., 5\}$.

Instance of Re-Identification Results: RS+FD

Setting:

- Average over 20 runs for stability;
- **RS+FD** solution with **GRR**;
- Number of data collections #Surveys $\in \{1, 2, ..., 5\}$.

Outline

1. Introduction

2. Attack-Based Approaches to LDP

- I. Value Distinguishability;
- II. Re-Identification;
- III. Fake Data Distinguishability.
- **IV.** Countermeasure Solution.
- 3. Conclusion & Perspectives

KECOLE POLYTECHNIQUE Unia

Countermeasure Solution for Fake Data Distinguishability

Insights:

- RS+FD is a natural countermeasure to re-identification attacks;
- Chained errors on data distinguishability attacks.
- Uniform fake data of RS+FD is distinguishable.

Outline

- 1. Introduction
- 2. Attack-Based Approaches to LDP
- **3.** Conclusion & Perspectives

POLYTECHNIQUE Unia

Takeaway Messages

Conclusion:

- Identified new privacy threats for LDP mechanisms (*i.e.*, SMP and RS+FD);
- Distinguishability & re-identification attacks;
- $RS+FD \rightarrow Natural countermeasure against re-identification attacks;$
- $RS+RFD \rightarrow Countermeasure solution$ against fake data distinguishability;

POLYTECHNIQUE Unia

Takeaway Messages

Conclusion:

- Identified new privacy threats for LDP mechanisms (*i.e.*, SMP and RS+FD);
- Distinguishability & re-identification attacks;
- $RS+FD \rightarrow Natural countermeasure against re-identification attacks;$
- $RS+RFD \rightarrow Countermeasure solution against fake data distinguishability;$

Perspectives:

- Use privacy attacks for DP auditing [7];
- Privacy risks of local *d*-privacy mechanisms [8];
- Design of new countermeaure solutions.

[7] Jagielski, Ullman, Oprea. *Auditing differentially private machine learning*. NeurIPS 2020.[8] Chatzikokolakis *et al. Broadening the scope of differential privacy using metrics*. PETS 2013.

On the Risks of Collecting Multidimensional Data Under Local Differential Privacy

Héber H. Arcolezi Inria and École Polytechnique (IPP) heber.hwang-arcolezi@inria.fr

Jean-François Couchot Femto-ST Institute, Univ. Bourg. Franche-Comté, CNRS jean-francois.couchot@univ-fcomte.fr Sébastien Gambs Université du Québec à Montréal, UQAM gambs.sebastien@uqam.ca

Catuscia Palamidessi Inria and École Polytechnique (IPP) catuscia@lix.polytechnique.fr

CONTACT

