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1. FROM ANONYMIZATION TO DATA DISTORTION

Distorted data may bias ML fairness…?

2. FAIRNESS EFFECTS VARY BY LEVEL OF ANALYSIS
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Individual fairness [4]

“Similar individuals → similar predictions”

(measures local consistency of model outputs)

Group fairness [5]

“Equal outcomes across demographic groups”

(measures parity between protected groups)

Anonymization tends to smooth predictions (↑ individual fairness)

but to amplify group disparities (↓ group fairness)

 Consistent results across 

• Datasets → Adult, Compas, ACSIncome

• Protected attributes → Gender, Race

• Models → XGBoost, RF, LGBM, MLP

• Metrics → Utility & individual and group fairness

 Further research questions 

• Record suppression → minorities most affected?

• Target distribution variation → fairness varies?

• Data size variation → reduces stability?

3. ROBUSTNESS AND GENERALIZATION

 Individual fairness ↑ 

 → homogeneous data… “fairness washing” [6]

 Group fairness ↓ 

 → up to 4× disparity

 Utility ↓ slightly 

 

Future work

• Fairness-aware anonymization

• Joint optimization of privacy-fairness-utility 

• Extend to multiclass classification, regression

4. KEY TAKEAWAYS & PERSPECTIVES

YES!

E
O

D
→
𝟎

S
F
→
𝟎

Utility

Fairness

Privacy


	Slide 1

