

Original

data

Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness

Héber H. Arcolezi[†] Mina Alishahi‡ Adda-Akram Bendoukha[®] Nesrine Kaaniche?

1. FROM ANONYMIZATION TO DATA DISTORTION

‡Open Universiteit

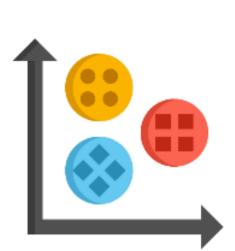
†Inria

Data [1,2,3]

YES!

[?]Télécom SudParis

"Safe in the crowd"



BUT...

distributions

Alters data

Distorted data may bias ML fairness...?

2. FAIRNESS EFFECTS VARY BY LEVEL OF ANALYSIS

Individual fairness [4]

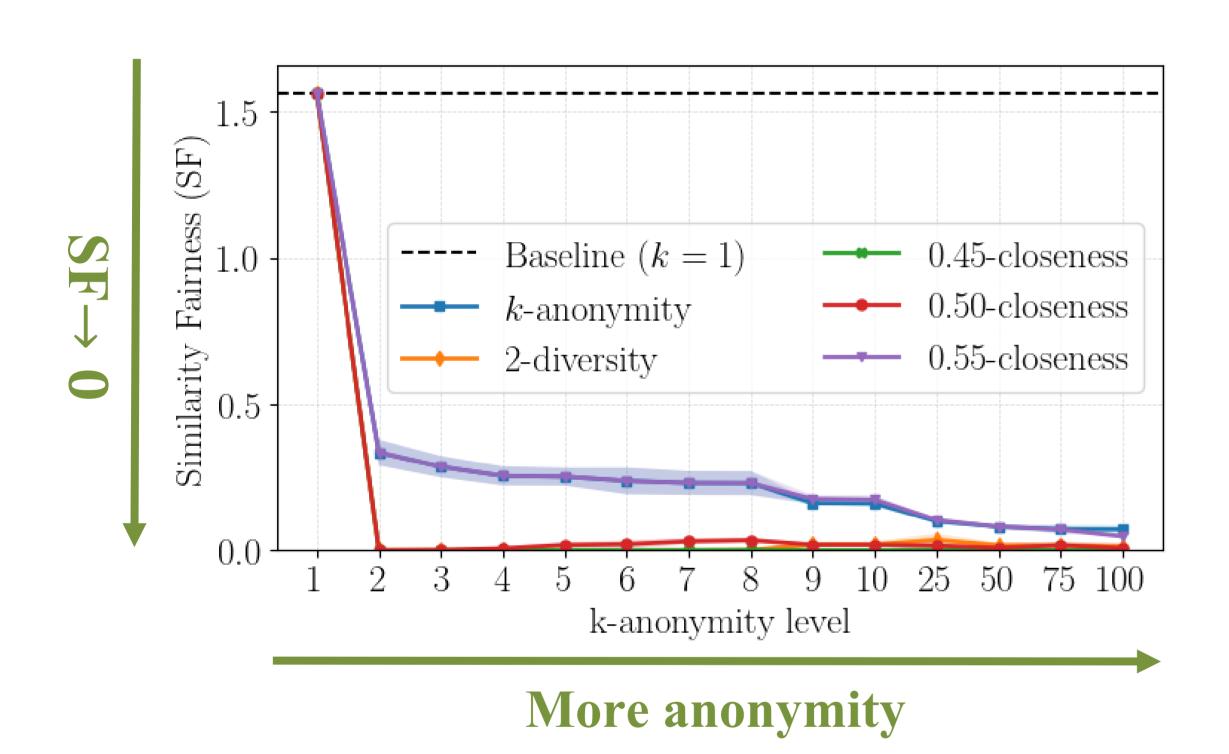
Data generalization

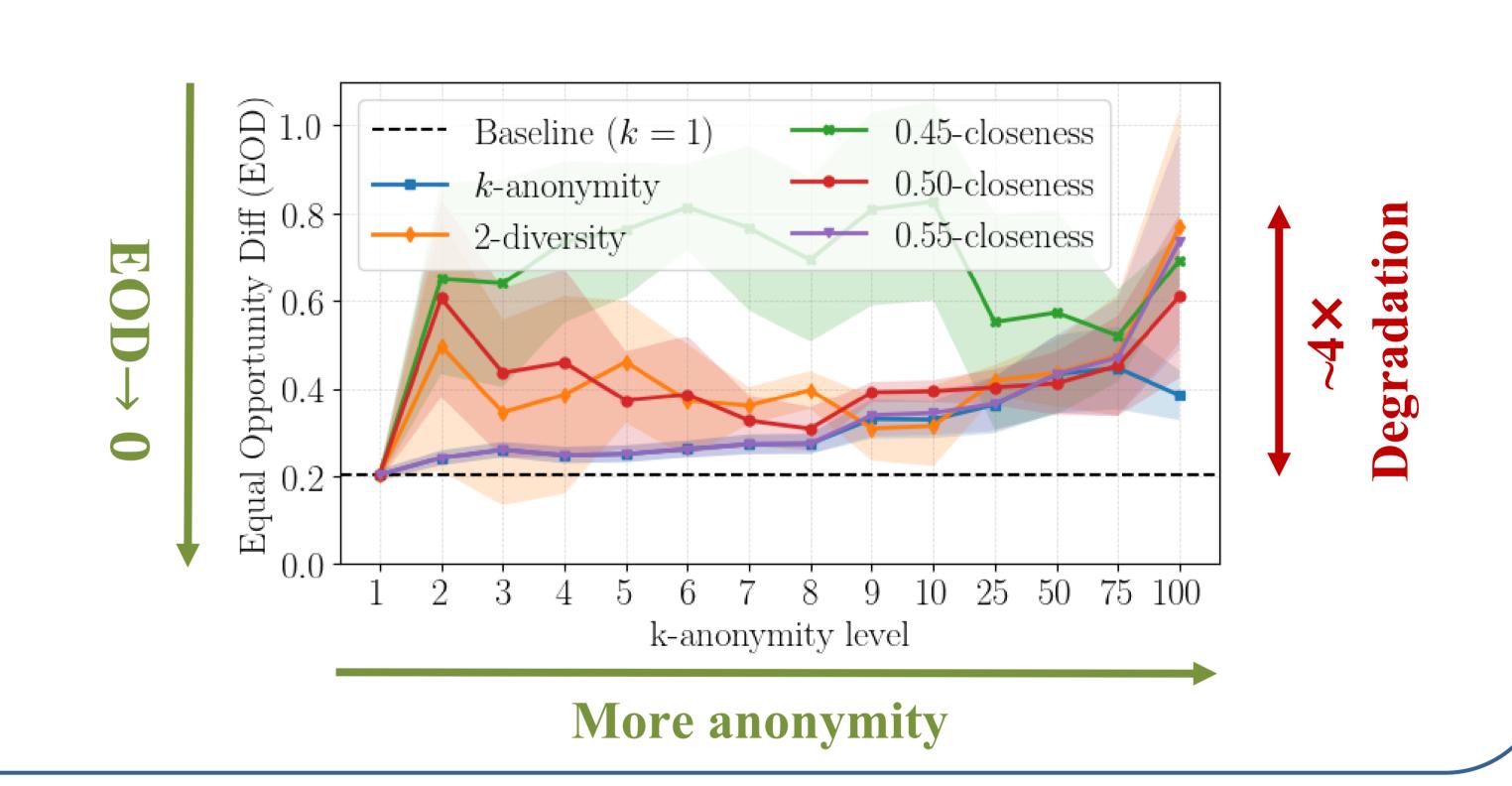
"Similar individuals → similar predictions" (measures local consistency of model outputs)

Group fairness [5]

"Equal outcomes across demographic groups" (measures parity between protected groups)

Anonymization tends to *smooth predictions* († individual fairness) but to amplify group disparities (\proup fairness)





3. ROBUSTNESS AND GENERALIZATION

Consistent results across

- Datasets → Adult, Compas, ACSIncome
- Protected attributes → Gender, Race
- Models → XGBoost, RF, LGBM, MLP
- Metrics → Utility & individual and group fairness

Further research questions

2007.

- **Record suppression** → minorities most affected?
- Target distribution variation \rightarrow fairness varies?
- Data size variation \rightarrow reduces stability?

4. KEY TAKEAWAYS & PERSPECTIVES

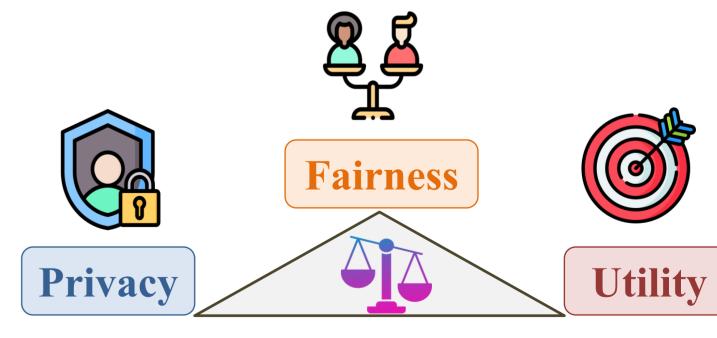
Individual fairness ↑

→ homogeneous data... "fairness washing" [6]

Group fairness \

 \rightarrow up to 4× disparity

Utility ↓ slightly





Future work

- Fairness-aware anonymization
- Joint optimization of privacy-fairness-utility
 - Extend to multiclass classification, regression

REFERENCES

- [1] Sweeney, Latanya. "k-anonymity: A model for protecting privacy". International journal of uncertainty, fuzziness and knowledge-based systems, 2022. [2] Machanavajjhala, Ashwin, et al. "l-diversity: Privacy beyond k-anonymity". ACM
- TKDD, 2007.
- [3] Li, Ninghui, et al. "t-closeness: Privacy beyond k-anonymity and l-diversity". ICDE,
- [4] Dwork, Cynthia, et al. "Fairness through awareness". Proceedings of the 3rd innovations in theoretical computer science conference. 2012.
- [5] Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in supervised learning". NeurIPS, 2016
- [6] Aïvodji, Ulrich, et al. "Fairwashing: the risk of rationalization". ICML, 2019.

ACKNOWLEDGEMENTS

This work has been partially supported by the French National Research Agency (ANR), under contracts "ANR-24-CE23-6239" (AI-**PULSE), "ANR-22-CE39-0002" (EQUIHID),** and "ANR 22-PECY-0002" (IPoP).